These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 26469205)

  • 1. Boundary effects in finite size plasmonic crystals: focusing and routing of plasmonic beams for optical communications.
    Benetou MI; Bouillard JS; Segovia P; Dickson W; Thomsen BC; Bayvel P; Zayats AV
    Nanotechnology; 2015 Nov; 26(44):444001. PubMed ID: 26469205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shaping plasmon beams via the controlled illumination of finite-size plasmonic crystals.
    Bouillard JS; Segovia P; Dickson W; Wurtz GA; Zayats AV
    Sci Rep; 2014 Nov; 4():7234. PubMed ID: 25429786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directing fluorescence with plasmonic and photonic structures.
    Dutta Choudhury S; Badugu R; Lakowicz JR
    Acc Chem Res; 2015 Aug; 48(8):2171-80. PubMed ID: 26168343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controllable multiple plasmonic bending beams via polarization of incident waves.
    Li H; Qu Y; Ullah H; Zhang B; Zhang Z
    Opt Express; 2017 Nov; 25(24):29659-29666. PubMed ID: 29221003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polarization controlled coupling and shaping of surface plasmon polaritons by nanoantenna arrays.
    Avayu O; Epstein I; Eizner E; Ellenbogen T
    Opt Lett; 2015 Apr; 40(7):1520-3. PubMed ID: 25831374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electro-plasmonic 2 × 2 channel-routing switch arranged on a thin-Si-doped metal/insulator/semiconductor/metal structure.
    Moazzam MK; Kaatuzian H
    Appl Opt; 2016 Jan; 55(3):565-75. PubMed ID: 26835932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Broadband and broadangle SPP antennas based on plasmonic crystals with linear chirp.
    Bouillard JS; Vilain S; Dickson W; Wurtz GA; Zayats AV
    Sci Rep; 2012; 2():829. PubMed ID: 23170197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subwavelength plasmonics for graded-index optics on a chip.
    Grajower M; Lerman GM; Goykhman I; Desiatov B; Yanai A; Smith DR; Levy U
    Opt Lett; 2013 Sep; 38(18):3492-5. PubMed ID: 24104796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Angular-momentum nanometrology in an ultrathin plasmonic topological insulator film.
    Yue Z; Ren H; Wei S; Lin J; Gu M
    Nat Commun; 2018 Oct; 9(1):4413. PubMed ID: 30356063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strong coupling of diffraction coupled plasmons and optical waveguide modes in gold stripe-dielectric nanostructures at telecom wavelengths.
    Thomas PA; Auton GH; Kundys D; Grigorenko AN; Kravets VG
    Sci Rep; 2017 Mar; 7():45196. PubMed ID: 28338060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photo-thermal modulation of surface plasmon polariton propagation at telecommunication wavelengths.
    Kaya S; Weeber JC; Zacharatos F; Hassan K; Bernardin T; Cluzel B; Fatome J; Finot C
    Opt Express; 2013 Sep; 21(19):22269-84. PubMed ID: 24104119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Broadband focusing and demultiplexing of surface plasmon polaritons on metal surface by holographic groove patterns.
    Chen YG; Yang FY; Liu J; Li ZY
    Opt Express; 2014 Jun; 22(12):14727-37. PubMed ID: 24977568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of two-dimensional plasmonic bottle beams.
    Genevet P; Dellinger J; Blanchard R; She A; Petit M; Cluzel B; Kats MA; de Fornel F; Capasso F
    Opt Express; 2013 Apr; 21(8):10295-300. PubMed ID: 23609739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface plasmon polariton beams from an electrically excited plasmonic crystal.
    Canneson D; Le Moal E; Cao S; Quélin X; Dallaporta H; Dujardin G; Boer-Duchemin E
    Opt Express; 2016 Nov; 24(23):26186-26200. PubMed ID: 27857355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust multispectral transparency in continuous metal film structures via multiple near-field plasmon coupling by a finite-difference time-domain method.
    Liu GQ; Hu Y; Liu ZQ; Chen YH; Cai ZJ; Zhang XN; Huang K
    Phys Chem Chem Phys; 2014 Mar; 16(9):4320-8. PubMed ID: 24452786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arbitrary bending plasmonic light waves.
    Epstein I; Arie A
    Phys Rev Lett; 2014 Jan; 112(2):023903. PubMed ID: 24484015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Holographic detection of the orbital angular momentum of light with plasmonic photodiodes.
    Genevet P; Lin J; Kats MA; Capasso F
    Nat Commun; 2012; 3():1278. PubMed ID: 23232408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A dynamic plasmonic manipulation technique assisted by phase modulation of an incident optical vortex beam.
    Yuan GH; Wang Q; Tan PS; Lin J; Yuan XC
    Nanotechnology; 2012 Sep; 23(38):385204. PubMed ID: 22948098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diffraction limited focusing and routing of gap plasmons by a metal-dielectric-metal lens.
    Dennis BS; Czaplewski DA; Haftel MI; Lopez D; Blumberg G; Aksyuk V
    Opt Express; 2015 Aug; 23(17):21899-908. PubMed ID: 26368166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gap surface plasmon polaritons enhanced by a plasmonic lens.
    Chul Kim H; Cheng X
    Opt Lett; 2011 Aug; 36(16):3082-4. PubMed ID: 21847167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.