These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 26469525)

  • 1. Network-selectivity and stimulus-discrimination in the primary visual cortex: cell-assembly dynamics.
    Bharmauria V; Bachatene L; Cattan S; Brodeur S; Chanauria N; Rouat J; Molotchnikoff S
    Eur J Neurosci; 2016 Jan; 43(2):204-19. PubMed ID: 26469525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional synchrony and stimulus selectivity of visual cortical units: Comparison between cats and mice.
    Bachatene L; Bharmauria V; Cattan S; Chanauria N; Etindele-Sosso FA; Molotchnikoff S
    Neuroscience; 2016 Nov; 337():331-338. PubMed ID: 27670902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cooling in cat visual cortex: stability of orientation selectivity despite changes in responsiveness and spike width.
    Girardin CC; Martin KA
    Neuroscience; 2009 Dec; 164(2):777-87. PubMed ID: 19660532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sparseness of coding in area 17 of the cat visual cortex: a comparison between pinwheel centres and orientation domains.
    Jayakumar J; Hu D; Vidyasagar TR
    Neuroscience; 2012 Dec; 225():55-64. PubMed ID: 22963796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergistic activity between primary visual neurons.
    Bharmauria V; Bachatene L; Cattan S; Rouat J; Molotchnikoff S
    Neuroscience; 2014 May; 268():255-64. PubMed ID: 24662850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of functional connectivity following visual adaptation: homeostasis in V1.
    Bachatene L; Bharmauria V; Cattan S; Rouat J; Molotchnikoff S
    Brain Res; 2015 Jan; 1594():136-53. PubMed ID: 25451112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High noise correlation between the functionally connected neurons in emergent V1 microcircuits.
    Bharmauria V; Bachatene L; Cattan S; Chanauria N; Rouat J; Molotchnikoff S
    Exp Brain Res; 2016 Feb; 234(2):523-32. PubMed ID: 26525713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase sensitivity of complex cells in primary visual cortex.
    Hietanen MA; Cloherty SL; van Kleef JP; Wang C; Dreher B; Ibbotson MR
    Neuroscience; 2013 May; 237():19-28. PubMed ID: 23357120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orientation selectivity in cat primary visual cortex: local and global measurement.
    Xu T; Yan HM; Song XM; Li M
    Neurosci Bull; 2015 Oct; 31(5):561-71. PubMed ID: 26089234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational subunits of visual cortical neurons revealed by artificial neural networks.
    Lau B; Stanley GB; Dan Y
    Proc Natl Acad Sci U S A; 2002 Jun; 99(13):8974-9. PubMed ID: 12060706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sharper orientation tuning of the extraclassical suppressive-surround due to a neuron's location in the V1 orientation map emerges late in time.
    Liu YJ; Hashemi-Nezhad M; Lyon DC
    Neuroscience; 2013 Jan; 229():100-17. PubMed ID: 23159311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimuli outside the classical receptive field modulate the synchronization of action potentials between cells in visual cortex of cats.
    Bretzner F; Aïtoubah J; Shumikhina S; Tan YF; Molotchnikoff S
    Neuroreport; 2000 Apr; 11(6):1313-7. PubMed ID: 10817613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Dynamics of tuning to orientation of cross-like figures in neurons from the cat visual cortex].
    Lazareva NA; Tsutskiridze DIu; Shevelev IA; Novikova RV; Tikhomirov AS; Sharaev GA
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2003; 53(6):722-9. PubMed ID: 14959486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 'Simplification' of responses of complex cells in cat striate cortex: suppressive surrounds and 'feedback' inactivation.
    Bardy C; Huang JY; Wang C; FitzGibbon T; Dreher B
    J Physiol; 2006 Aug; 574(Pt 3):731-50. PubMed ID: 16709635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics and constancy in cortical spatiotemporal patterns of orientation processing.
    Sharon D; Grinvald A
    Science; 2002 Jan; 295(5554):512-5. PubMed ID: 11799249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uniformity and diversity of response properties of neurons in the primary visual cortex: selectivity for orientation, direction of motion, and stimulus size from center to far periphery.
    Yu HH; Rosa MG
    Vis Neurosci; 2014 Jan; 31(1):85-98. PubMed ID: 24160942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Standardized F1: a consistent measure of strength of modulation of visual responses to sine-wave drifting gratings.
    Wypych M; Wang C; Nagy A; Benedek G; Dreher B; Waleszczyk WJ
    Vision Res; 2012 Nov; 72():14-33. PubMed ID: 23000273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between contrast adaptation and orientation tuning in V1 and V2 of cat visual cortex.
    Crowder NA; Price NS; Hietanen MA; Dreher B; Clifford CW; Ibbotson MR
    J Neurophysiol; 2006 Jan; 95(1):271-83. PubMed ID: 16192327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase sensitivities, excitatory summation fields, and silent suppressive receptive fields of single neurons in the parastriate cortex of the cat.
    Romo PA; Wang C; Zeater N; Solomon SG; Dreher B
    J Neurophysiol; 2011 Oct; 106(4):1688-712. PubMed ID: 21715668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Orientation sensitive properties of visually driven neurons in extrastriate area 21a of cat cortex.
    Harutiunian-Kozak BA; Grigorian GG; Kozak JA; Sharanbekian AB; Sarkisyan GS; Khachvankian DK
    Arch Ital Biol; 2008 Jun; 146(2):119-30. PubMed ID: 18822799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.