These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 26469545)

  • 1. Euphorbia heterophylla leaf extract mediated green synthesis of Ag/TiO2 nanocomposite and investigation of its excellent catalytic activity for reduction of variety of dyes in water.
    Atarod M; Nasrollahzadeh M; Mohammad Sajadi S
    J Colloid Interface Sci; 2016 Jan; 462():272-9. PubMed ID: 26469545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Green synthesis of Ag/Fe(3)O(4) nanocomposite using Euphorbia peplus Linn leaf extract and evaluation of its catalytic activity.
    Sajjadi M; Nasrollahzadeh M; Mohammad Sajadi S
    J Colloid Interface Sci; 2017 Jul; 497():1-13. PubMed ID: 28260670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Achillea millefolium L. extract mediated green synthesis of waste peach kernel shell supported silver nanoparticles: Application of the nanoparticles for catalytic reduction of a variety of dyes in water.
    Khodadadi B; Bordbar M; Nasrollahzadeh M
    J Colloid Interface Sci; 2017 May; 493():85-93. PubMed ID: 28088570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Green synthesis of Pd/walnut shell nanocomposite using Equisetum arvense L. leaf extract and its application for the reduction of 4-nitrophenol and organic dyes in a very short time.
    Bordbar M; Mortazavimanesh N
    Environ Sci Pollut Res Int; 2017 Feb; 24(4):4093-4104. PubMed ID: 27933496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Green synthesis of Pd nanoparticles at Apricot kernel shell substrate using Salvia hydrangea extract: Catalytic activity for reduction of organic dyes.
    Khodadadi B; Bordbar M; Nasrollahzadeh M
    J Colloid Interface Sci; 2017 Mar; 490():1-10. PubMed ID: 27870949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visible light photo catalytic inactivation of bacteria and photo degradation of methylene blue with Ag/TiO2 nanocomposite prepared by a novel method.
    Tahir K; Ahmad A; Li B; Nazir S; Khan AU; Nasir T; Khan ZUH; Naz R; Raza M
    J Photochem Photobiol B; 2016 Sep; 162():189-198. PubMed ID: 27376463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Green Synthesis of Palladium/Titanium Dioxide Nanoparticles and their Application for the Reduction of Methyl Orange, Congo Red and Rhodamine B in Aqueous Medium.
    Maham M; Nasrollahzadeh M; Bagherzadeh M; Akbari R
    Comb Chem High Throughput Screen; 2017; 20(9):787-795. PubMed ID: 29065826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosynthesis and application of Ag/bone nanocomposite for the hydration of cyanamides in Myrica gale L. extract as a green solvent.
    Momeni SS; Nasrollahzadeh M; Rustaiyan A
    J Colloid Interface Sci; 2017 Aug; 499():93-101. PubMed ID: 28364719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Green synthesis of the Cu/ZnO nanoparticles mediated by Euphorbia prolifera leaf extract and investigation of their catalytic activity.
    Momeni SS; Nasrollahzadeh M; Rustaiyan A
    J Colloid Interface Sci; 2016 Jun; 472():173-9. PubMed ID: 27038280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Green synthesis of Pd/RGO/Fe3O4 nanocomposite using Withania coagulans leaf extract and its application as magnetically separable and reusable catalyst for the reduction of 4-nitrophenol.
    Atarod M; Nasrollahzadeh M; Sajadi SM
    J Colloid Interface Sci; 2016 Mar; 465():249-58. PubMed ID: 26674242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel bio-degradable polymer stabilized Ag/TiO2 nanocomposites and their catalytic activity on reduction of methylene blue under natural sun light.
    Geetha D; Kavitha S; Ramesh PS
    Ecotoxicol Environ Saf; 2015 Nov; 121():126-34. PubMed ID: 25976106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of the GO/Pd nanocomposite and its application for the degradation of organic dyes in water.
    Omidvar A; Jaleh B; Nasrollahzadeh M
    J Colloid Interface Sci; 2017 Jun; 496():44-50. PubMed ID: 28213150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanotitania crystals induced efficient photocatalytic color degradation, antimicrobial and larvicidal activity.
    Udayabhanu J; Kannan V; Tiwari M; Natesan G; Giovanni B; Perumal V
    J Photochem Photobiol B; 2018 Jan; 178():496-504. PubMed ID: 29241121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Green synthesis of a photocatalyst Ag/TiO
    Nguyen TH; Hoang NH; Van Tran C; Nguyen PTM; Dang TD; Chung WJ; Chang SW; Nguyen DD; Senthil Kumar P; La DD
    Chemosphere; 2022 Nov; 306():135474. PubMed ID: 35760139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosynthesis of Ag/reduced graphene oxide/Fe(3)O(4) using Lotus garcinii leaf extract and its application as a recyclable nanocatalyst for the reduction of 4-nitrophenol and organic dyes.
    Maham M; Nasrollahzadeh M; Sajadi SM; Nekoei M
    J Colloid Interface Sci; 2017 Jul; 497():33-42. PubMed ID: 28260673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Green synthesis of magnetically recoverable Fe
    Rostami-Vartooni A; Moradi-Saadatmand A
    IET Nanobiotechnol; 2019 Jun; 13(4):407-415. PubMed ID: 31171746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Green synthesis of seashell supported silver nanoparticles using Bunium persicum seeds extract: Application of the particles for catalytic reduction of organic dyes.
    Rostami-Vartooni A; Nasrollahzadeh M; Alizadeh M
    J Colloid Interface Sci; 2016 May; 470():268-275. PubMed ID: 26962977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Euphorbia helioscopia Linn as a green source for synthesis of silver nanoparticles and their optical and catalytic properties.
    Nasrollahzadeh M; Mohammad Sajadi S; Babaei F; Maham M
    J Colloid Interface Sci; 2015 Jul; 450():374-380. PubMed ID: 25854504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of
    Aljubiri SM; El-Shwiniy WH; Younes AAO; Alosaimi EH; El-Wahaab BA
    Molecules; 2023 May; 28(9):. PubMed ID: 37175344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile synthesis of graphene oxide-silver nanocomposite for decontamination of water from multiple pollutants by adsorption, catalysis and antibacterial activity.
    Naeem H; Ajmal M; Qureshi RB; Muntha ST; Farooq M; Siddiq M
    J Environ Manage; 2019 Jan; 230():199-211. PubMed ID: 30286349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.