These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 26469608)

  • 21. Minimization of detection volume by surface-plasmon-coupled emission.
    Gryczynski Z; Borejdo J; Calander N; Matveeva EG; Gryczynski I
    Anal Biochem; 2006 Sep; 356(1):125-31. PubMed ID: 16764813
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Generation of lossy mode resonances with different nanocoatings deposited on coverslips.
    Fuentes O; Goicoechea J; Corres JM; Villar ID; Ozcariz A; Matias IR
    Opt Express; 2020 Jan; 28(1):288-301. PubMed ID: 32118958
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Numerical retrieval of thin aluminium layer properties from SPR experimental data.
    Barchiesi D
    Opt Express; 2012 Apr; 20(8):9064-78. PubMed ID: 22513618
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interference of conically scattered light in surface plasmon resonance.
    Webster A; Vollmer F
    Opt Lett; 2013 Feb; 38(3):244-6. PubMed ID: 23381398
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Combined SPR and SERS microscopy in the Kretschmann configuration.
    Meyer SA; Auguié B; Le Ru EC; Etchegoin PG
    J Phys Chem A; 2012 Jan; 116(3):1000-7. PubMed ID: 22175443
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multiphoton photoelectron emission microscopy of single Au nanorods: combined experimental and theoretical study of rod morphology and dielectric environment on localized surface plasmon resonances.
    Grubisic A; Schweikhard V; Baker TA; Nesbitt DJ
    Phys Chem Chem Phys; 2013 Jul; 15(26):10616-27. PubMed ID: 23417070
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differentiating surface and bulk interactions using localized surface plasmon resonances of gold nanorods.
    Nehru N; Donev EU; Huda GM; Yu L; Wei Y; Hastings JT
    Opt Express; 2012 Mar; 20(7):6905-14. PubMed ID: 22453368
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surface Plasmon-Coupled Directional Enhanced Raman Scattering by Means of the Reverse Kretschmann Configuration.
    Huo SX; Liu Q; Cao SH; Cai WP; Meng LY; Xie KX; Zhai YY; Zong C; Yang ZL; Ren B; Li YQ
    J Phys Chem Lett; 2015 Jun; 6(11):2015-9. PubMed ID: 26266494
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Experimental demonstration of magnetoplasmon polariton at InSb(InAs)/dielectric interface for terahertz sensor application.
    Chochol J; Postava K; Čada M; Pištora J
    Sci Rep; 2017 Oct; 7(1):13117. PubMed ID: 29030618
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Infrared plasmonics with indium-tin-oxide nanorod arrays.
    Li SQ; Guo P; Zhang L; Zhou W; Odom TW; Seideman T; Ketterson JB; Chang RP
    ACS Nano; 2011 Nov; 5(11):9161-70. PubMed ID: 22017677
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Combining surface plasmon resonance (SPR) spectroscopy with surface-enhanced Raman scattering (SERS).
    Meyer SA; Le Ru EC; Etchegoin PG
    Anal Chem; 2011 Mar; 83(6):2337-44. PubMed ID: 21322587
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ellipsometric measurement technique for a modified Otto configuration used for observing surface-plasmon resonance.
    Iwata T; Mizutani Y
    Opt Express; 2010 Jul; 18(14):14480-7. PubMed ID: 20639933
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Twin lossy mode resonance on a single D-shaped optical fiber.
    Imas JJ; Zamarreño CR; Zubiate P; Del Villar I; Pérez-Escudero JM; Matías IR
    Opt Lett; 2021 Jul; 46(13):3284-3287. PubMed ID: 34197437
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of lossy mode resonances on thin-film coated cladding removed plastic fiber.
    Corres JM; Del Villar I; Arregui FJ; Matias IR
    Opt Lett; 2015 Nov; 40(21):4867-70. PubMed ID: 26512470
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Polarization-dependent scanning photoionization microscopy: ultrafast plasmon-mediated electron ejection dynamics in single Au nanorods.
    Schweikhard V; Grubisic A; Baker TA; Thomann I; Nesbitt DJ
    ACS Nano; 2011 May; 5(5):3724-35. PubMed ID: 21466166
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fluorescence enhancement with deep-ultraviolet surface plasmon excitation.
    Ono A; Kikawada M; Akimoto R; Inami W; Kawata Y
    Opt Express; 2013 Jul; 21(15):17447-53. PubMed ID: 23938614
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optical resonances in Kretschmann and Otto configurations.
    Akimov Y
    Opt Lett; 2018 Mar; 43(6):1195-1198. PubMed ID: 29543249
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Surface plasmon resonance sensor working at terahertz frequency].
    Feng H; Wang L
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Aug; 31(8):2017-20. PubMed ID: 22007375
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis of hollow gold nanoparticles on the surface of indium tin oxide glass and their application for plasmonic biosensor.
    Hu T; Lin Y; Yan J; Di J
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Jun; 110():72-7. PubMed ID: 23557775
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrochemistry on a localized surface plasmon resonance sensor.
    Sannomiya T; Dermutz H; Hafner C; Vörös J; Dahlin AB
    Langmuir; 2010 May; 26(10):7619-26. PubMed ID: 20020724
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.