These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

677 related articles for article (PubMed ID: 26469629)

  • 1. Enhanced electron-phonon coupling for a semiconductor charge qubit in a surface phonon cavity.
    Chen JC; Sato Y; Kosaka R; Hashisaka M; Muraki K; Fujisawa T
    Sci Rep; 2015 Oct; 5():15176. PubMed ID: 26469629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Raman phonon emission in a driven double quantum dot.
    Colless JI; Croot XG; Stace TM; Doherty AC; Barrett SD; Lu H; Gossard AC; Reilly DJ
    Nat Commun; 2014 Apr; 5():3716. PubMed ID: 24759675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Angle-dependent decoherence of charge qubits in free-standing slabs.
    Liao YY; Chen YN; Jian SR
    J Phys Condens Matter; 2010 Feb; 22(4):045301. PubMed ID: 21386309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reducing Phonon-Induced Decoherence in Solid-State Single-Photon Sources with Cavity Quantum Electrodynamics.
    Grange T; Somaschi N; Antón C; De Santis L; Coppola G; Giesz V; Lemaître A; Sagnes I; Auffèves A; Senellart P
    Phys Rev Lett; 2017 Jun; 118(25):253602. PubMed ID: 28696749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-electron-phonon interaction in a suspended quantum dot phonon cavity.
    Weig EM; Blick RH; Brandes T; Kirschbaum J; Wegscheider W; Bichler M; Kotthaus JP
    Phys Rev Lett; 2004 Jan; 92(4):046804. PubMed ID: 14995394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing confined phonon modes by transport through a nanowire double quantum dot.
    Weber C; Fuhrer A; Fasth C; Lindwall G; Samuelson L; Wacker A
    Phys Rev Lett; 2010 Jan; 104(3):036801. PubMed ID: 20366667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlocal electron-phonon coupling in organic semiconductor crystals: the role of acoustic lattice vibrations.
    Li Y; Coropceanu V; Brédas JL
    J Chem Phys; 2013 May; 138(20):204713. PubMed ID: 23742506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cavity Quantum Acoustic Device in the Multimode Strong Coupling Regime.
    Moores BA; Sletten LR; Viennot JJ; Lehnert KW
    Phys Rev Lett; 2018 Jun; 120(22):227701. PubMed ID: 29906138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface-acoustic-wave-induced transport in a double quantum dot.
    Naber WJ; Fujisawa T; Liu HW; van der Wiel WG
    Phys Rev Lett; 2006 Apr; 96(13):136807. PubMed ID: 16712021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microwave Detection of Electron-Phonon Interactions in a Cavity-Coupled Double Quantum Dot.
    Hartke TR; Liu YY; Gullans MJ; Petta JR
    Phys Rev Lett; 2018 Mar; 120(9):097701. PubMed ID: 29547336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced Phonon Antibunching in a Circuit Quantum Acoustodynamical System Containing Two Surface Acoustic Wave Resonators.
    Yin TS; Jin GR; Chen A
    Micromachines (Basel); 2022 Apr; 13(4):. PubMed ID: 35457897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable Hybrid Qubit in a GaAs Double Quantum Dot.
    Cao G; Li HO; Yu GD; Wang BC; Chen BB; Song XX; Xiao M; Guo GC; Jiang HW; Hu X; Guo GP
    Phys Rev Lett; 2016 Feb; 116(8):086801. PubMed ID: 26967435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sound-based analogue of cavity quantum electrodynamics in silicon.
    Soykal ÖO; Ruskov R; Tahan C
    Phys Rev Lett; 2011 Dec; 107(23):235502. PubMed ID: 22182098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applications of time-domain spectroscopy to electron-phonon coupling dynamics at surfaces.
    Matsumoto Y
    Chem Rec; 2014 Oct; 14(5):952-63. PubMed ID: 25139240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phonon-mediated versus coulombic backaction in quantum dot circuits.
    Harbusch D; Taubert D; Tranitz HP; Wegscheider W; Ludwig S
    Phys Rev Lett; 2010 May; 104(19):196801. PubMed ID: 20866986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of Confined Optical Phonons in Exciton Generation in Spherical Quantum Dot.
    Singh R; Dutta M; Stroscio MA
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic State-Resolved Electron-Phonon Coupling in an Organic Charge Transfer Material from Broadband Quantum Beat Spectroscopy.
    Rury AS; Sorenson S; Driscoll E; Dawlaty JM
    J Phys Chem Lett; 2015 Sep; 6(18):3560-4. PubMed ID: 26722724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear valley phonon scattering under the strong coupling regime.
    Liu X; Yi J; Yang S; Lin EC; Zhang YJ; Zhang P; Li JF; Wang Y; Lee YH; Tian ZQ; Zhang X
    Nat Mater; 2021 Sep; 20(9):1210-1215. PubMed ID: 33846584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissipative time-dependent quantum transport theory: Quantum interference and phonon induced decoherence dynamics.
    Zhang Y; Yam C; Chen G
    J Chem Phys; 2015 Apr; 142(16):164101. PubMed ID: 25933746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phonon-dressed Mollow triplet in the regime of cavity quantum electrodynamics: excitation-induced dephasing and nonperturbative cavity feeding effects.
    Roy C; Hughes S
    Phys Rev Lett; 2011 Jun; 106(24):247403. PubMed ID: 21770598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.