These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 26469682)

  • 21. Two-dimensional exciton properties in monolayer semiconducting phosphorus allotropes.
    Villegas CE; Rodin AS; Carvalho A; Rocha AR
    Phys Chem Chem Phys; 2016 Oct; 18(40):27829-27836. PubMed ID: 27711643
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Orbital-dependent Electron-Hole Interaction in Graphene and Associated Multi-Layer Structures.
    Deng T; Su H
    Sci Rep; 2015 Nov; 5():17337. PubMed ID: 26610715
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Excitonic energy level structure and pigment-protein interactions in the recombinant water-soluble chlorophyll protein. II. Spectral hole-burning experiments.
    Pieper J; Rätsep M; Trostmann I; Schmitt FJ; Theiss C; Paulsen H; Eichler HJ; Freiberg A; Renger G
    J Phys Chem B; 2011 Apr; 115(14):4053-65. PubMed ID: 21417356
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hubbard excitons in two-dimensional nanomaterials.
    Huang L; Xie J; Sheng W
    J Phys Condens Matter; 2019 Jul; 31(27):275302. PubMed ID: 30952139
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Self-consistent dielectric constant determination for monolayer WSe
    Lee SY; Jeong TY; Kim JH; Yun S; Yee KJ
    Opt Express; 2018 Sep; 26(18):23061-23068. PubMed ID: 30184962
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simple Screened Hydrogen Model of Excitons in Two-Dimensional Materials.
    Olsen T; Latini S; Rasmussen F; Thygesen KS
    Phys Rev Lett; 2016 Feb; 116(5):056401. PubMed ID: 26894722
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A tunable phonon-exciton Fano system in bilayer graphene.
    Tang TT; Zhang Y; Park CH; Geng B; Girit C; Hao Z; Martin MC; Zettl A; Crommie MF; Louie SG; Shen YR; Wang F
    Nat Nanotechnol; 2010 Jan; 5(1):32-6. PubMed ID: 19915569
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Excitonic effects on optical absorption spectra of doped graphene.
    Yang L
    Nano Lett; 2011 Sep; 11(9):3844-7. PubMed ID: 21861511
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dielectric function, critical points, and Rydberg exciton series of WSe
    Diware MS; Ganorkar SP; Park K; Chegal W; Cho HM; Cho YJ; Kim YD; Kim H
    J Phys Condens Matter; 2018 Jun; 30(23):235701. PubMed ID: 29714172
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Excitonic resonances in thin films of WSe2: from monolayer to bulk material.
    Arora A; Koperski M; Nogajewski K; Marcus J; Faugeras C; Potemski M
    Nanoscale; 2015 Jun; 7(23):10421-9. PubMed ID: 25998778
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exciton Mott transition in Si revealed by terahertz spectroscopy.
    Suzuki T; Shimano R
    Phys Rev Lett; 2012 Jul; 109(4):046402. PubMed ID: 23006100
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Luminescence signature of free exciton dissociation and liberated electron transfer across the junction of graphene/GaN hybrid structure.
    Wang J; Zheng C; Ning J; Zhang L; Li W; Ni Z; Chen Y; Wang J; Xu S
    Sci Rep; 2015 Jan; 5():7687. PubMed ID: 25567005
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exciton binding energy in semiconducting single-walled carbon nanotubes.
    Ma YZ; Valkunas L; Bachilo SM; Fleming GR
    J Phys Chem B; 2005 Aug; 109(33):15671-4. PubMed ID: 16852986
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dielectric environment and/or random disorder effects on free, charged and localized excitonic states in monolayer WS
    Hichri A; Amara IB; Ayari S; Jaziri S
    J Phys Condens Matter; 2017 Nov; 29(43):435305. PubMed ID: 28805189
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Direct observation of excitons and a continuum of one-dimensional Mott insulators: a reflection-type third-harmonic-generation study of Ni-halogen chain compounds.
    Ono M; Kishida H; Okamoto H
    Phys Rev Lett; 2005 Aug; 95(8):087401. PubMed ID: 16196901
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spin-Triplet Excitonic Insulator: The Case of Semihydrogenated Graphene.
    Jiang Z; Lou W; Liu Y; Li Y; Song H; Chang K; Duan W; Zhang S
    Phys Rev Lett; 2020 Apr; 124(16):166401. PubMed ID: 32383949
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tunable excitons in bilayer graphene.
    Ju L; Wang L; Cao T; Taniguchi T; Watanabe K; Louie SG; Rana F; Park J; Hone J; Wang F; McEuen PL
    Science; 2017 Nov; 358(6365):907-910. PubMed ID: 29146807
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Scaling of energy gaps in phosphorene nanoflakes.
    Huang L; Zhong J; Sheng W; Zhou A
    J Phys Condens Matter; 2021 Dec; 34(8):. PubMed ID: 34814118
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bright and dark excitons in semiconductor carbon nanotubes: insights from electronic structure calculations.
    Kilina S; Badaeva E; Piryatinski A; Tretiak S; Saxena A; Bishop AR
    Phys Chem Chem Phys; 2009 Jun; 11(21):4113-23. PubMed ID: 19458812
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Omnidirectional absorption and off-resonance field enhancement in dielectric cylinders coated with graphene layers.
    Arruda TJ; Martinez AS; Pinheiro FA
    J Opt Soc Am A Opt Image Sci Vis; 2015 May; 32(5):943-8. PubMed ID: 26366920
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.