BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 26469728)

  • 1. Merging colloidal nanoplasmonics and surface plasmon resonance spectroscopy for enhanced profiling of multiple myeloma-derived exosomes.
    Di Noto G; Bugatti A; Zendrini A; Mazzoldi EL; Montanelli A; Caimi L; Rusnati M; Ricotta D; Bergese P
    Biosens Bioelectron; 2016 Mar; 77():518-24. PubMed ID: 26469728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzyme-guided plasmonic biosensor based on dual-functional nanohybrid for sensitive detection of thrombin.
    Yan J; Wang L; Tang L; Lin L; Liu Y; Li J
    Biosens Bioelectron; 2015 Aug; 70():404-10. PubMed ID: 25845332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbohydrate immobilized on a dendrimer-coated colloidal gold surface for fabrication of a lectin-sensing device based on localized surface plasmon resonance spectroscopy.
    Ogiso M; Kobayashi J; Imai T; Matsuoka K; Itoh M; Imamura T; Okada T; Miura H; Nishiyama T; Hatanaka K; Minoura N
    Biosens Bioelectron; 2013 Mar; 41():465-70. PubMed ID: 23036773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cholesterol aided etching of tomatine gold nanoparticles: a non-enzymatic blood cholesterol monitor.
    Raj V; Johnson T; Joseph K
    Biosens Bioelectron; 2014 Oct; 60():191-4. PubMed ID: 24811192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Birth of the localized surface plasmon resonance in monolayer-protected gold nanoclusters.
    Malola S; Lehtovaara L; Enkovaara J; Häkkinen H
    ACS Nano; 2013 Nov; 7(11):10263-70. PubMed ID: 24107127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-area 3D chiral plasmonic structures.
    Frank B; Yin X; Schäferling M; Zhao J; Hein SM; Braun PV; Giessen H
    ACS Nano; 2013 Jul; 7(7):6321-9. PubMed ID: 23806025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Label-free detection of exosomes using a surface plasmon resonance biosensor.
    Sina AA; Vaidyanathan R; Wuethrich A; Carrascosa LG; Trau M
    Anal Bioanal Chem; 2019 Mar; 411(7):1311-1318. PubMed ID: 30719562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoplasmonic biosensor: coupling electrochemistry to localized surface plasmon resonance spectroscopy on nanocup arrays.
    Zhang D; Lu Y; Jiang J; Zhang Q; Yao Y; Wang P; Chen B; Cheng Q; Liu GL; Liu Q
    Biosens Bioelectron; 2015 May; 67():237-42. PubMed ID: 25172029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of nanoparticle size and cell type on high sensitivity cell detection using a localized surface plasmon resonance biosensor.
    Liu F; Wong MM; Chiu SK; Lin H; Ho JC; Pang SW
    Biosens Bioelectron; 2014 May; 55():141-8. PubMed ID: 24373953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosensing by optical waveguide spectroscopy based on localized surface plasmon resonance of gold nanoparticles used as a probe or as a label.
    Kajiura M; Nakanishi T; Iida H; Takada H; Osaka T
    J Colloid Interface Sci; 2009 Jul; 335(1):140-5. PubMed ID: 19395015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface plasmon resonance biosensors incorporating gold nanoparticles.
    Bedford EE; Spadavecchia J; Pradier CM; Gu FX
    Macromol Biosci; 2012 Jun; 12(6):724-39. PubMed ID: 22416018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The aspect ratio effect on plasmonic properties and biosensing of bonding mode in gold elliptical nanoring arrays.
    Tsai CY; Chang KH; Wu CY; Lee PT
    Opt Express; 2013 Jun; 21(12):14090-6. PubMed ID: 23787599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlled Assembly of Gold Nanostructures on a Solid Substrate via Imidazole Directed Hydrogen Bonding for High Performance Surface Enhance Raman Scattering Sensing of Hypochlorous Acid.
    Sun J; Liu R; Tang J; Zhang Z; Zhou X; Liu J
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16730-7. PubMed ID: 26167718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering plasmonic metal colloids through composition and structural design.
    Motl NE; Smith AF; DeSantis CJ; Skrabalak SE
    Chem Soc Rev; 2014 Jun; 43(11):3823-34. PubMed ID: 24352187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of the metal film thickness on the sensitivity of surface plasmon resonance biosensors.
    Ekgasit S; Thammacharoen C; Yu F; Knoll W
    Appl Spectrosc; 2005 May; 59(5):661-7. PubMed ID: 15969812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of label-free, homogeneous biosensing platform based on plasmonic coupling and surface-enhanced Raman scattering using unmodified gold nanoparticles.
    Yi Z; Li XY; Liu FJ; Jin PY; Chu X; Yu RQ
    Biosens Bioelectron; 2013 May; 43():308-14. PubMed ID: 23353007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoparticle-enhanced diffraction gratings for ultrasensitive surface plasmon biosensing.
    Wark AW; Lee HJ; Qavi AJ; Corn RM
    Anal Chem; 2007 Sep; 79(17):6697-701. PubMed ID: 17676761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of dielectric function of biotin-capped gold nanoparticles via signal enhancement on surface plasmon resonance.
    Li X; Tamada K; Baba A; Knoll W; Hara M
    J Phys Chem B; 2006 Aug; 110(32):15755-62. PubMed ID: 16898722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced broadband absorption in gold by plasmonic tapered coaxial holes.
    Mo L; Yang L; Nadzeyka A; Bauerdick S; He S
    Opt Express; 2014 Dec; 22(26):32233-44. PubMed ID: 25607189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.