These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

560 related articles for article (PubMed ID: 26470627)

  • 1. Spatially regularized machine learning for task and resting-state fMRI.
    Song X; Panych LP; Chen NK
    J Neurosci Methods; 2016 Jan; 257():214-28. PubMed ID: 26470627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A SVM-based quantitative fMRI method for resting-state functional network detection.
    Song X; Chen NK
    Magn Reson Imaging; 2014 Sep; 32(7):819-31. PubMed ID: 24928301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A unified machine learning method for task-related and resting state fMRI data analysis.
    Song X; Chen NK
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6426-9. PubMed ID: 25571467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Data-Driven and Predefined ROI-Based Quantification of Long-Term Resting-State fMRI Reproducibility.
    Song X; Panych LP; Chen NK
    Brain Connect; 2016 Mar; 6(2):136-51. PubMed ID: 26456172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. fMRI volume classification using a 3D convolutional neural network robust to shifted and scaled neuronal activations.
    Vu H; Kim HC; Jung M; Lee JH
    Neuroimage; 2020 Dec; 223():117328. PubMed ID: 32896633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decoding the individual finger movements from single-trial functional magnetic resonance imaging recordings of human brain activity.
    Shen G; Zhang J; Wang M; Lei D; Yang G; Zhang S; Du X
    Eur J Neurosci; 2014 Jun; 39(12):2071-82. PubMed ID: 24661456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Statistical power and prediction accuracy in multisite resting-state fMRI connectivity.
    Dansereau C; Benhajali Y; Risterucci C; Pich EM; Orban P; Arnold D; Bellec P
    Neuroimage; 2017 Apr; 149():220-232. PubMed ID: 28161310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classification of autistic individuals and controls using cross-task characterization of fMRI activity.
    Chanel G; Pichon S; Conty L; Berthoz S; Chevallier C; Grèzes J
    Neuroimage Clin; 2016; 10():78-88. PubMed ID: 26793434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-subject fMRI analysis via combined independent component analysis and shift-invariant canonical polyadic decomposition.
    Kuang LD; Lin QH; Gong XF; Cong F; Sui J; Calhoun VD
    J Neurosci Methods; 2015 Dec; 256():127-40. PubMed ID: 26327319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regions of interest for resting-state fMRI analysis determined by inter-voxel cross-correlation.
    Golestani AM; Goodyear BG
    Neuroimage; 2011 May; 56(1):246-51. PubMed ID: 21338691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decoding the encoding of functional brain networks: An fMRI classification comparison of non-negative matrix factorization (NMF), independent component analysis (ICA), and sparse coding algorithms.
    Xie J; Douglas PK; Wu YN; Brody AL; Anderson AE
    J Neurosci Methods; 2017 Apr; 282():81-94. PubMed ID: 28322859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sparse regularization techniques provide novel insights into outcome integration processes.
    Mohr H; Wolfensteller U; Frimmel S; Ruge H
    Neuroimage; 2015 Jan; 104():163-76. PubMed ID: 25467302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large-scale sparse functional networks from resting state fMRI.
    Li H; Satterthwaite TD; Fan Y
    Neuroimage; 2017 Aug; 156():1-13. PubMed ID: 28483721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated iterative reclustering framework for determining hierarchical functional networks in resting state fMRI.
    Shams SM; Afshin-Pour B; Soltanian-Zadeh H; Hossein-Zadeh GA; Strother SC
    Hum Brain Mapp; 2015 Sep; 36(9):3303-22. PubMed ID: 26032457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Task-evoked brain functional magnetic susceptibility mapping by independent component analysis (χICA).
    Chen Z; Calhoun VD
    J Neurosci Methods; 2016 Mar; 261():161-71. PubMed ID: 26778607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relation of visual creative imagery manipulation to resting-state brain oscillations.
    Cai Y; Zhang D; Liang B; Wang Z; Li J; Gao Z; Gao M; Chang S; Jiao B; Huang R; Liu M
    Brain Imaging Behav; 2018 Feb; 12(1):258-273. PubMed ID: 28271439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying patients with Alzheimer's disease using resting-state fMRI and graph theory.
    Khazaee A; Ebrahimzadeh A; Babajani-Feremi A
    Clin Neurophysiol; 2015 Nov; 126(11):2132-41. PubMed ID: 25907414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A fuzzy integral method based on the ensemble of neural networks to analyze fMRI data for cognitive state classification across multiple subjects.
    Cacha LA; Parida S; Dehuri S; Cho SB; Poznanski RR
    J Integr Neurosci; 2016 Dec; 15(4):593-606. PubMed ID: 28093025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Support vector machine learning-based fMRI data group analysis.
    Wang Z; Childress AR; Wang J; Detre JA
    Neuroimage; 2007 Jul; 36(4):1139-51. PubMed ID: 17524674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decoding of visual activity patterns from fMRI responses using multivariate pattern analyses and convolutional neural network.
    Zafar R; Kamel N; Naufal M; Malik AS; Dass SC; Ahmad RF; Abdullah JM; Reza F
    J Integr Neurosci; 2017; 16(3):275-289. PubMed ID: 28891512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.