These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
364 related articles for article (PubMed ID: 26471132)
1. Neurocontrol of Movement in Humans With Spinal Cord Injury. Dimitrijevic MR; Danner SM; Mayr W Artif Organs; 2015 Oct; 39(10):823-33. PubMed ID: 26471132 [TBL] [Abstract][Full Text] [Related]
2. Motor Control of Human Spinal Cord Disconnected from the Brain and Under External Movement. Mayr W; Krenn M; Dimitrijevic MR Adv Exp Med Biol; 2016; 957():159-171. PubMed ID: 28035565 [TBL] [Abstract][Full Text] [Related]
3. Epidural and transcutaneous spinal electrical stimulation for restoration of movement after incomplete and complete spinal cord injury. Mayr W; Krenn M; Dimitrijevic MR Curr Opin Neurol; 2016 Dec; 29(6):721-726. PubMed ID: 27798422 [TBL] [Abstract][Full Text] [Related]
4. Initiating extension of the lower limbs in subjects with complete spinal cord injury by epidural lumbar cord stimulation. Jilge B; Minassian K; Rattay F; Pinter MM; Gerstenbrand F; Binder H; Dimitrijevic MR Exp Brain Res; 2004 Feb; 154(3):308-26. PubMed ID: 14586532 [TBL] [Abstract][Full Text] [Related]
6. Spinal Rhythm Generation by Step-Induced Feedback and Transcutaneous Posterior Root Stimulation in Complete Spinal Cord-Injured Individuals. Minassian K; Hofstoetter US; Danner SM; Mayr W; Bruce JA; McKay WB; Tansey KE Neurorehabil Neural Repair; 2016 Mar; 30(3):233-43. PubMed ID: 26089308 [TBL] [Abstract][Full Text] [Related]
7. Augmentation of Voluntary Locomotor Activity by Transcutaneous Spinal Cord Stimulation in Motor-Incomplete Spinal Cord-Injured Individuals. Hofstoetter US; Krenn M; Danner SM; Hofer C; Kern H; McKay WB; Mayr W; Minassian K Artif Organs; 2015 Oct; 39(10):E176-86. PubMed ID: 26450344 [TBL] [Abstract][Full Text] [Related]
8. Motor control in the human spinal cord. Dimitrijevic MR; Persy I; Forstner C; Kern H; Dimitrijevic MM Artif Organs; 2005 Mar; 29(3):216-9. PubMed ID: 15725220 [TBL] [Abstract][Full Text] [Related]
9. Spinal Cord Stimulation and Augmentative Control Strategies for Leg Movement after Spinal Paralysis in Humans. Minassian K; Hofstoetter US CNS Neurosci Ther; 2016 Apr; 22(4):262-70. PubMed ID: 26890324 [TBL] [Abstract][Full Text] [Related]
10. Targeting Lumbar Spinal Neural Circuitry by Epidural Stimulation to Restore Motor Function After Spinal Cord Injury. Minassian K; McKay WB; Binder H; Hofstoetter US Neurotherapeutics; 2016 Apr; 13(2):284-94. PubMed ID: 26843089 [TBL] [Abstract][Full Text] [Related]
11. A brain-spine interface alleviating gait deficits after spinal cord injury in primates. Capogrosso M; Milekovic T; Borton D; Wagner F; Moraud EM; Mignardot JB; Buse N; Gandar J; Barraud Q; Xing D; Rey E; Duis S; Jianzhong Y; Ko WK; Li Q; Detemple P; Denison T; Micera S; Bezard E; Bloch J; Courtine G Nature; 2016 Nov; 539(7628):284-288. PubMed ID: 27830790 [TBL] [Abstract][Full Text] [Related]
12. Assessment of corticospinal function in spinal cord injury using transcranial motor cortex stimulation: a review. McKay WB; Stokic DS; Dimitrijevic MR J Neurotrauma; 1997 Aug; 14(8):539-48. PubMed ID: 9300564 [TBL] [Abstract][Full Text] [Related]
13. Electrical stimulation and motor recovery. Young W Cell Transplant; 2015; 24(3):429-46. PubMed ID: 25646771 [TBL] [Abstract][Full Text] [Related]
14. Noninvasive Reactivation of Motor Descending Control after Paralysis. Gerasimenko YP; Lu DC; Modaber M; Zdunowski S; Gad P; Sayenko DG; Morikawa E; Haakana P; Ferguson AR; Roy RR; Edgerton VR J Neurotrauma; 2015 Dec; 32(24):1968-80. PubMed ID: 26077679 [TBL] [Abstract][Full Text] [Related]
15. Human lumbar cord circuitries can be activated by extrinsic tonic input to generate locomotor-like activity. Minassian K; Persy I; Rattay F; Pinter MM; Kern H; Dimitrijevic MR Hum Mov Sci; 2007 Apr; 26(2):275-95. PubMed ID: 17343947 [TBL] [Abstract][Full Text] [Related]