These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 26471454)

  • 1. 3DRobot: automated generation of diverse and well-packed protein structure decoys.
    Deng H; Jia Y; Zhang Y
    Bioinformatics; 2016 Feb; 32(3):378-87. PubMed ID: 26471454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TOUCHSTONE II: a new approach to ab initio protein structure prediction.
    Zhang Y; Kolinski A; Skolnick J
    Biophys J; 2003 Aug; 85(2):1145-64. PubMed ID: 12885659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A homology/ab initio hybrid algorithm for sampling near-native protein conformations.
    Dhingra P; Jayaram B
    J Comput Chem; 2013 Aug; 34(22):1925-36. PubMed ID: 23728619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How well can we predict native contacts in proteins based on decoy structures and their energies?
    Zhu J; Zhu Q; Shi Y; Liu H
    Proteins; 2003 Sep; 52(4):598-608. PubMed ID: 12910459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A decoy set for the thermostable subdomain from chicken villin headpiece, comparison of different free energy estimators.
    Fogolari F; Tosatto SC; Colombo G
    BMC Bioinformatics; 2005 Dec; 6():301. PubMed ID: 16354298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using physical features of protein core packing to distinguish real proteins from decoys.
    Grigas AT; Mei Z; Treado JD; Levine ZA; Regan L; O'Hern CS
    Protein Sci; 2020 Sep; 29(9):1931-1944. PubMed ID: 32710566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel high resolution Calpha--Calpha distance dependent force field based on a high quality decoy set.
    Rajgaria R; McAllister SR; Floudas CA
    Proteins; 2006 Nov; 65(3):726-41. PubMed ID: 16981202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A model of local-minima distribution on conformational space and its application to protein structure prediction.
    Li H
    Proteins; 2006 Sep; 64(4):985-91. PubMed ID: 16838344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate disulfide-bonding network predictions improve ab initio structure prediction of cysteine-rich proteins.
    Yang J; He BJ; Jang R; Zhang Y; Shen HB
    Bioinformatics; 2015 Dec; 31(23):3773-81. PubMed ID: 26254435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel side-chain orientation dependent potential derived from random-walk reference state for protein fold selection and structure prediction.
    Zhang J; Zhang Y
    PLoS One; 2010 Oct; 5(10):e15386. PubMed ID: 21060880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. STRUM: structure-based prediction of protein stability changes upon single-point mutation.
    Quan L; Lv Q; Zhang Y
    Bioinformatics; 2016 Oct; 32(19):2936-46. PubMed ID: 27318206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A physical reference state unifies the structure-derived potential of mean force for protein folding and binding.
    Liu S; Zhang C; Zhou H; Zhou Y
    Proteins; 2004 Jul; 56(1):93-101. PubMed ID: 15162489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved protein structure selection using decoy-dependent discriminatory functions.
    Wang K; Fain B; Levitt M; Samudrala R
    BMC Struct Biol; 2004 Jun; 4():8. PubMed ID: 15207004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new pairwise folding potential based on improved decoy generation and side-chain packing.
    Loose C; Klepeis JL; Floudas CA
    Proteins; 2004 Feb; 54(2):303-14. PubMed ID: 14696192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NeBcon: protein contact map prediction using neural network training coupled with naïve Bayes classifiers.
    He B; Mortuza SM; Wang Y; Shen HB; Zhang Y
    Bioinformatics; 2017 Aug; 33(15):2296-2306. PubMed ID: 28369334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinguishing native conformations of proteins from decoys with an effective free energy estimator based on the OPLS all-atom force field and the Surface Generalized Born solvent model.
    Felts AK; Gallicchio E; Wallqvist A; Levy RM
    Proteins; 2002 Aug; 48(2):404-22. PubMed ID: 12112706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep convolutional networks for quality assessment of protein folds.
    Derevyanko G; Grudinin S; Bengio Y; Lamoureux G
    Bioinformatics; 2018 Dec; 34(23):4046-4053. PubMed ID: 29931128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fragment-free approach to protein folding using conditional neural fields.
    Zhao F; Peng J; Xu J
    Bioinformatics; 2010 Jun; 26(12):i310-7. PubMed ID: 20529922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SPICKER: a clustering approach to identify near-native protein folds.
    Zhang Y; Skolnick J
    J Comput Chem; 2004 Apr; 25(6):865-71. PubMed ID: 15011258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of two optimization methods to derive energy parameters for protein folding: perceptron and Z score.
    Vendruscolo M; Mirny LA; Shakhnovich EI; Domany E
    Proteins; 2000 Nov; 41(2):192-201. PubMed ID: 10966572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.