These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 26471454)

  • 21. mTM-align: an algorithm for fast and accurate multiple protein structure alignment.
    Dong R; Peng Z; Zhang Y; Yang J
    Bioinformatics; 2018 May; 34(10):1719-1725. PubMed ID: 29281009
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A beta-complex statistical four body contact potential combined with a hydrogen bond statistical potential recognizes the correct native structure from protein decoy sets.
    Sánchez-González G; Kim JK; Kim DS; Garduño-Juárez R
    Proteins; 2013 Aug; 81(8):1420-33. PubMed ID: 23568277
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Distance dependent centroid to centroid force fields using high resolution decoys.
    Rajgaria R; McAllister SR; Floudas CA
    Proteins; 2008 Feb; 70(3):950-70. PubMed ID: 17847088
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein loop selection using orientation-dependent force fields derived by parameter optimization.
    Liang S; Zhang C; Standley DM
    Proteins; 2011 Jul; 79(7):2260-7. PubMed ID: 21574188
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure refinement of protein model decoys requires accurate side-chain placement.
    Olson MA; Lee MS
    Proteins; 2013 Mar; 81(3):469-78. PubMed ID: 23070940
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Using a hydrophobic contact potential to evaluate native and near-native folds generated by molecular dynamics simulations.
    Huang ES; Subbiah S; Tsai J; Levitt M
    J Mol Biol; 1996 Apr; 257(3):716-25. PubMed ID: 8648635
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimized distance-dependent atom-pair-based potential DOOP for protein structure prediction.
    Chae MH; Krull F; Knapp EW
    Proteins; 2015 May; 83(5):881-90. PubMed ID: 25693513
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel approach to decoy set generation: designing a physical energy function having local minima with native structure characteristics.
    Keasar C; Levitt M
    J Mol Biol; 2003 May; 329(1):159-74. PubMed ID: 12742025
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Network properties of protein-decoy structures.
    Chatterjee S; Bhattacharyya M; Vishveshwara S
    J Biomol Struct Dyn; 2012; 29(6):606-22. PubMed ID: 22545992
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assembly of protein tertiary structures from secondary structures using optimized potentials.
    Hoang TX; Seno F; Banavar JR; Cieplak M; Maritan A
    Proteins; 2003 Aug; 52(2):155-65. PubMed ID: 12833540
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recognizing metal and acid radical ion-binding sites by integrating ab initio modeling with template-based transferals.
    Hu X; Dong Q; Yang J; Zhang Y
    Bioinformatics; 2016 Nov; 32(21):3260-3269. PubMed ID: 27378301
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An improved protein decoy set for testing energy functions for protein structure prediction.
    Tsai J; Bonneau R; Morozov AV; Kuhlman B; Rohl CA; Baker D
    Proteins; 2003 Oct; 53(1):76-87. PubMed ID: 12945051
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protein structure prediction by all-atom free-energy refinement.
    Verma A; Wenzel W
    BMC Struct Biol; 2007 Mar; 7():12. PubMed ID: 17371594
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Clustering 100,000 protein structure decoys in minutes.
    Li SC; Bu D; Li M
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(3):765-73. PubMed ID: 22025764
    [TBL] [Abstract][Full Text] [Related]  

  • 35. SVR_CAF: an integrated score function for detecting native protein structures among decoys.
    Zhou J; Yan W; Hu G; Shen B
    Proteins; 2014 Apr; 82(4):556-64. PubMed ID: 24115148
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protein structure refinement by optimization.
    Carlsen M; Røgen P
    Proteins; 2015 Sep; 83(9):1616-24. PubMed ID: 26095680
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Balancing multiple objectives in conformation sampling to control decoy diversity in template-free protein structure prediction.
    Zaman AB; Shehu A
    BMC Bioinformatics; 2019 Apr; 20(1):211. PubMed ID: 31023237
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spatial profiling of protein hydrophobicity: native vs. decoy structures.
    Zhou R; Silverman BD; Royyuru AK; Athma P
    Proteins; 2003 Sep; 52(4):561-72. PubMed ID: 12910456
    [TBL] [Abstract][Full Text] [Related]  

  • 39. From Extraction of Local Structures of Protein Energy Landscapes to Improved Decoy Selection in Template-Free Protein Structure Prediction.
    Akhter N; Shehu A
    Molecules; 2018 Jan; 23(1):. PubMed ID: 29351266
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison between self-guided Langevin dynamics and molecular dynamics simulations for structure refinement of protein loop conformations.
    Olson MA; Chaudhury S; Lee MS
    J Comput Chem; 2011 Nov; 32(14):3014-22. PubMed ID: 21793008
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.