BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 26471619)

  • 1. Eugenol improves physical and chemical stabilities of nanoemulsions loaded with β-carotene.
    Guan Y; Wu J; Zhong Q
    Food Chem; 2016 Mar; 194():787-96. PubMed ID: 26471619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of β-carotene nanoemulsion-based delivery systems using dual-channel microfluidization: Physical and chemical stability.
    Luo X; Zhou Y; Bai L; Liu F; Deng Y; McClements DJ
    J Colloid Interface Sci; 2017 Mar; 490():328-335. PubMed ID: 27914331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physical and chemical stability of β-carotene nanoemulsions during storage and thermal process.
    Borba CM; Tavares MN; Macedo LP; Araújo GS; Furlong EB; Dora CL; Burkert JFM
    Food Res Int; 2019 Jul; 121():229-237. PubMed ID: 31108744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal Degradation and Isomerization of β-Carotene in Oil-in-Water Nanoemulsions Supplemented with Natural Antioxidants.
    Yi J; Fan Y; Yokoyama W; Zhang Y; Zhao L
    J Agric Food Chem; 2016 Mar; 64(9):1970-6. PubMed ID: 26881704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of β-carotene degradation in oil-in-water nanoemulsions: influence of oil-soluble and water-soluble antioxidants.
    Qian C; Decker EA; Xiao H; McClements DJ
    Food Chem; 2012 Dec; 135(3):1036-43. PubMed ID: 22953821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lotus seedpod proanthocyanidin-whey protein complexes: Impact on physical and chemical stability of β-carotene-nanoemulsions.
    Chen Y; Zhang R; Xie B; Sun Z; McClements DJ
    Food Res Int; 2020 Jan; 127():108738. PubMed ID: 31882082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvement of thermal and UV-light stability of β-carotene-loaded nanoemulsions by water-soluble chitosan coating.
    Baek EJ; Garcia CV; Shin GH; Kim JT
    Int J Biol Macromol; 2020 Dec; 165(Pt A):1156-1163. PubMed ID: 33038403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Food-Grade Nanoemulsions for the Effective Delivery of β-Carotene.
    Mehmood T; Ahmed A; Ahmed Z
    Langmuir; 2021 Mar; 37(10):3086-3092. PubMed ID: 33646002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing in vivo retinol bioavailability by incorporating β-carotene from alga Dunaliella salina into nanoemulsions containing natural-based emulsifiers.
    Teixé-Roig J; Oms-Oliu G; Odriozola-Serrano I; Martín-Belloso O
    Food Res Int; 2023 Feb; 164():112359. PubMed ID: 36737947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. State of dispersed lipid carrier and interface composition as determinants of beta-carotene stability in oil-in-water emulsions.
    Cornacchia L; Roos YH
    J Food Sci; 2011 Oct; 76(8):C1211-8. PubMed ID: 22417586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability and bioaccessibility of β-carotene in nanoemulsions stabilized by modified starches.
    Liang R; Shoemaker CF; Yang X; Zhong F; Huang Q
    J Agric Food Chem; 2013 Feb; 61(6):1249-57. PubMed ID: 23331094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of emulsifier nature and concentration on the stability of β-carotene enriched nanoemulsions during in vitro digestion.
    Gasa-Falcon A; Odriozola-Serrano I; Oms-Oliu G; Martín-Belloso O
    Food Funct; 2019 Feb; 10(2):713-722. PubMed ID: 30663728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal and UV stability of β-carotene dissolved in peppermint oil microemulsified by sunflower lecithin and Tween 20 blend.
    Chen H; Zhong Q
    Food Chem; 2015 May; 174():630-6. PubMed ID: 25529729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoemulsions of thymol and eugenol co-emulsified by lauric arginate and lecithin.
    Ma Q; Davidson PM; Zhong Q
    Food Chem; 2016 Sep; 206():167-73. PubMed ID: 27041312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of antioxidants on physicochemical properties and in vitro bioaccessibility of β-carotene loaded nanoemulsion under thermal and cold plasma discharge accelerated tests.
    Chaijan M; Srirattanachot K; Nisoa M; Cheong LZ; Panpipat W
    Food Chem; 2021 Mar; 339():128157. PubMed ID: 33152897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stability and partitioning of β-carotene in whey protein emulsions during storage.
    Fahmi Wan Mohamad WA; McNaughton D; Buckow R; Augustin MA
    Food Funct; 2017 Nov; 8(11):3917-3925. PubMed ID: 28920995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of mixed surfactants-based β-carotene nanoemulsions using response surface methodology: An ultrasonic homogenization approach.
    Mehmood T; Ahmed A; Ahmad A; Ahmad MS; Sandhu MA
    Food Chem; 2018 Jul; 253():179-184. PubMed ID: 29502819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization and utilization of soy protein isolate-(-)-epigallocatechin gallate-maltose ternary conjugate as an emulsifier for nanoemulsions: Enhanced physicochemical stability of the β-carotene nanoemulsion.
    Geng M; Feng X; Wu X; Tan X; Shang B; Huang Y; Teng F; Li Y
    Food Chem; 2023 Aug; 417():135842. PubMed ID: 36931013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulating β-carotene bioaccessibility by controlling oil composition and concentration in edible nanoemulsions.
    Salvia-Trujillo L; Qian C; Martín-Belloso O; McClements DJ
    Food Chem; 2013 Aug; 139(1-4):878-84. PubMed ID: 23561185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of droplet size on the efficacy of oil-in-water emulsions loaded with phenolic antimicrobials.
    Terjung N; Löffler M; Gibis M; Hinrichs J; Weiss J
    Food Funct; 2012 Mar; 3(3):290-301. PubMed ID: 22183117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.