These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
257 related articles for article (PubMed ID: 26471659)
1. Detection of ochratoxin A (OTA) in coffee using chemiluminescence resonance energy transfer (CRET) aptasensor. Jo EJ; Mun H; Kim SJ; Shim WB; Kim MG Food Chem; 2016 Mar; 194():1102-7. PubMed ID: 26471659 [TBL] [Abstract][Full Text] [Related]
2. Homogeneous assay of target molecules based on chemiluminescence resonance energy transfer (CRET) using DNAzyme-linked aptamers. Mun H; Jo EJ; Li T; Joung HA; Hong DG; Shim WB; Jung C; Kim MG Biosens Bioelectron; 2014 Aug; 58():308-13. PubMed ID: 24658027 [TBL] [Abstract][Full Text] [Related]
3. Study of the efficiency of chemiluminescence resonance energy transfer system based on hemin/G-quadruplex DNAzyme catalysis by chemiluminescence imaging. Li J; Xu M; Huang X; Ren J Talanta; 2022 Aug; 245():123447. PubMed ID: 35430528 [TBL] [Abstract][Full Text] [Related]
4. Exonuclease-assisted multicolor aptasensor for visual detection of ochratoxin A based on G-quadruplex-hemin DNAzyme-mediated etching of gold nanorod. Yu X; Lin Y; Wang X; Xu L; Wang Z; Fu F Mikrochim Acta; 2018 Apr; 185(5):259. PubMed ID: 29680954 [TBL] [Abstract][Full Text] [Related]
5. An enhanced chemiluminescence resonance energy transfer system based on target recycling G-guadruplexes/hemin DNAzyme catalysis and its application in ultrasensitive detection of DNA. Chen J; Huang Y; Vdovenko M; Sakharov IY; Su G; Zhao S Talanta; 2015 Jun; 138():59-63. PubMed ID: 25863372 [TBL] [Abstract][Full Text] [Related]
6. High-Throughput Low-Background G-Quadruplex Aptamer Chemiluminescence Assay for Ochratoxin A Using a Single Photonic Crystal Microsphere. Shen P; Li W; Liu Y; Ding Z; Deng Y; Zhu X; Jin Y; Li Y; Li J; Zheng T Anal Chem; 2017 Nov; 89(21):11862-11868. PubMed ID: 28988477 [TBL] [Abstract][Full Text] [Related]
7. An ultrasensitive aptasensor for Ochratoxin A using hexagonal core/shell upconversion nanoparticles as luminophores. Dai S; Wu S; Duan N; Chen J; Zheng Z; Wang Z Biosens Bioelectron; 2017 May; 91():538-544. PubMed ID: 28086124 [TBL] [Abstract][Full Text] [Related]
8. Aptamer-DNAzyme hairpins for biosensing of Ochratoxin A. Yang C; Lates V; Prieto-Simón B; Marty JL; Yang X Biosens Bioelectron; 2012 Feb; 32(1):208-12. PubMed ID: 22221796 [TBL] [Abstract][Full Text] [Related]
9. Chemiluminescence and chemiluminescence resonance energy transfer (CRET) aptamer sensors using catalytic hemin/G-quadruplexes. Liu X; Freeman R; Golub E; Willner I ACS Nano; 2011 Sep; 5(9):7648-55. PubMed ID: 21866963 [TBL] [Abstract][Full Text] [Related]
10. Chemiluminescent and chemiluminescence resonance energy transfer (CRET) detection of DNA, metal ions, and aptamer-substrate complexes using hemin/G-quadruplexes and CdSe/ZnS quantum dots. Freeman R; Liu X; Willner I J Am Chem Soc; 2011 Aug; 133(30):11597-604. PubMed ID: 21678959 [TBL] [Abstract][Full Text] [Related]
11. A chemiluminescence aptasensor for thrombin detection based on aptamer-conjugated and hemin/G-quadruplex DNAzyme signal-amplified carbon fiber composite. Sun Y; Wang X; Xu H; Ding C; Lin Y; Luo C; Wei Q Anal Chim Acta; 2018 Dec; 1043():132-141. PubMed ID: 30392661 [TBL] [Abstract][Full Text] [Related]
12. A novel polydopamine-based chemiluminescence resonance energy transfer method for microRNA detection coupling duplex-specific nuclease-aided target recycling strategy. Wang Q; Yin BC; Ye BC Biosens Bioelectron; 2016 Jun; 80():366-372. PubMed ID: 26866561 [TBL] [Abstract][Full Text] [Related]
13. A competitive aptamer chemiluminescence assay for ochratoxin A using a single silica photonic crystal microsphere. Shen P; Li W; Ding Z; Deng Y; Liu Y; Zhu X; Cai T; Li J; Zheng T Anal Biochem; 2018 Aug; 554():28-33. PubMed ID: 29860095 [TBL] [Abstract][Full Text] [Related]
14. In Situ Generation and Consumption of H2O2 by Bienzyme-Quantum Dots Bioconjugates for Improved Chemiluminescence Resonance Energy Transfer. Xu S; Li X; Li C; Li J; Zhang X; Wu P; Hou X Anal Chem; 2016 Jun; 88(12):6418-24. PubMed ID: 27223815 [TBL] [Abstract][Full Text] [Related]
15. Chemiluminescence resonance energy transfer imaging on magnetic particles for single-nucleotide polymorphism detection based on ligation chain reaction. Bi S; Zhang Z; Dong Y; Wang Z Biosens Bioelectron; 2015 Mar; 65():139-44. PubMed ID: 25461149 [TBL] [Abstract][Full Text] [Related]
16. Optical aptasensors for the analysis of the vascular endothelial growth factor (VEGF). Freeman R; Girsh J; Jou AF; Ho JA; Hug T; Dernedde J; Willner I Anal Chem; 2012 Jul; 84(14):6192-8. PubMed ID: 22746189 [TBL] [Abstract][Full Text] [Related]
17. A sensitive gold nanoparticles sensing platform based on resonance energy transfer for chemiluminescence light on detection of biomolecules. Qin G; Zhao S; Huang Y; Jiang J; Liu YM Biosens Bioelectron; 2013 Aug; 46():119-23. PubMed ID: 23524140 [TBL] [Abstract][Full Text] [Related]
18. A signal-on electrochemical aptasensor based on silanized cellulose nanofibers for rapid point-of-use detection of ochratoxin A. El-Moghazy AY; Amaly N; Istamboulie G; Nitin N; Sun G Mikrochim Acta; 2020 Sep; 187(9):535. PubMed ID: 32870397 [TBL] [Abstract][Full Text] [Related]
19. Sensitive quantitation of Ochratoxin A in cocoa beans using differential pulse voltammetry based aptasensor. Mishra RK; Hayat A; Catanante G; Istamboulie G; Marty JL Food Chem; 2016 Feb; 192():799-804. PubMed ID: 26304413 [TBL] [Abstract][Full Text] [Related]
20. A FRET-based dual-color evanescent wave optical fiber aptasensor for simultaneous fluorometric determination of aflatoxin M1 and ochratoxin A. Song D; Yang R; Fang S; Liu Y; Long F Mikrochim Acta; 2018 Oct; 185(11):508. PubMed ID: 30338352 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]