These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 26471661)

  • 1. Formation of stable radicals in catechin/nitrous acid systems: participation of dinitrosocatechin.
    Morina F; Takahama U; Mojović M; Popović-Bijelić A; Veljović-Jovanović S
    Food Chem; 2016 Mar; 194():1116-22. PubMed ID: 26471661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactions of (+)-catechin with salivary nitrite and thiocyanate under conditions simulating the gastric lumen: production of dinitrosocatechin and its thiocyanate conjugate.
    Takahama U; Yamauchi R; Hirota S
    Free Radic Res; 2014 Aug; 48(8):956-66. PubMed ID: 24886172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions between (+)-catechin and quercetin during their oxidation by nitrite under the conditions simulating the stomach.
    Veljovic-Jovanovic S; Morina F; Yamauchi R; Hirota S; Takahama U
    J Agric Food Chem; 2014 May; 62(21):4951-9. PubMed ID: 24785370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quercetin 7-O-glucoside suppresses nitrite-induced formation of dinitrosocatechins and their quinones in catechin/nitrite systems under stomach simulating conditions.
    Morina F; Takahama U; Yamauchi R; Hirota S; Veljovic-Jovanovic S
    Food Funct; 2015 Jan; 6(1):219-29. PubMed ID: 25375233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactions of polyphenols in masticated apple fruit with nitrite under stomach simulating conditions: Formation of nitroso compounds and thiocyanate conjugates.
    Hirota S; Takahama U
    Food Res Int; 2015 Sep; 75():20-26. PubMed ID: 28454948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Possible Reactions of Dietary Phenolic Compounds with Salivary Nitrite and Thiocyanate in the Stomach.
    Takahama U; Hirota S
    Antioxidants (Basel); 2017 Jul; 6(3):. PubMed ID: 28678174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The chemical reactivity of (-)-epicatechin quinone mainly resides in its B-ring.
    Zhang M; Vervoort L; Moalin M; Mommers A; Douny C; den Hartog GJM; Haenen GRMM
    Free Radic Biol Med; 2018 Aug; 124():31-39. PubMed ID: 29859347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of inclusion complex on nitrous acid reaction with flavonoids.
    Khalafi L; Rafiee M; Sedaghat S
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Oct; 81(1):661-5. PubMed ID: 21782497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic characterization of the enzymatic and chemical oxidation of the catechins in green tea.
    Munoz-Munoz JL; García-Molina F; Molina-Alarcón M; Tudela J; García-Cánovas F; Rodríguez-López JN
    J Agric Food Chem; 2008 Oct; 56(19):9215-24. PubMed ID: 18788750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction of nitrous Acid to nitric oxide by coffee melanoidins and enhancement of the reduction by thiocyanate: possibility of its occurrence in the stomach.
    Takahama U; Hirota S
    J Agric Food Chem; 2008 Jun; 56(12):4736-44. PubMed ID: 18522412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidation of quercetin by salivary components. Quercetin-dependent reduction of salivary nitrite under acidic conditions producing nitric oxide.
    Takahama U; Oniki T; Hirota S
    J Agric Food Chem; 2002 Jul; 50(15):4317-22. PubMed ID: 12105964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quercetin-dependent reduction of salivary nitrite to nitric oxide under acidic conditions and interaction between quercetin and ascorbic acid during the reduction.
    Takahama U; Yamamoto A; Hirota S; Oniki T
    J Agric Food Chem; 2003 Sep; 51(20):6014-20. PubMed ID: 13129310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of the food additive sulfite on nitrite-dependent nitric oxide production under conditions simulating the mixture of saliva and gastric juice.
    Takahama U; Hirota S
    J Agric Food Chem; 2012 Feb; 60(4):1102-12. PubMed ID: 22224438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple pathways of the reaction of 2,2-diphenyl-1-picrylhydrazyl radical (DPPH·) with (+)-catechin: evidence for the formation of a covalent adduct between DPPH· and the oxidized form of the polyphenol.
    Osman AM
    Biochem Biophys Res Commun; 2011 Sep; 412(3):473-8. PubMed ID: 21835163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic studies of catechins as antioxidants against radical oxidation.
    Kondo K; Kurihara M; Miyata N; Suzuki T; Toyoda M
    Arch Biochem Biophys; 1999 Feb; 362(1):79-86. PubMed ID: 9917331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic analysis of catechin oxidation by polyphenol oxidase at neutral pH.
    Jiménez-Atiénzar M; Cabanes J; Gandía-Herrero F; García-Carmona F
    Biochem Biophys Res Commun; 2004 Jul; 319(3):902-10. PubMed ID: 15184068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of adducts between an odoriferous volatile thiol and oxidized grape phenolic compounds: kinetic study of adduct formation under chemical and enzymatic oxidation conditions.
    Nikolantonaki M; Jourdes M; Shinoda K; Teissedre PL; Quideau S; Darriet P
    J Agric Food Chem; 2012 Mar; 60(10):2647-56. PubMed ID: 22324817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Salivary thiocyanate/nitrite inhibits hydroxylation of 2-hydroxybenzoic acid induced by hydrogen peroxide/Fe(II) systems under acidic conditions: possibility of thiocyanate/nitrite-dependent scavenging of hydroxyl radical in the stomach.
    Takahama U; Oniki T
    Biochim Biophys Acta; 2004 Nov; 1675(1-3):130-8. PubMed ID: 15535976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functionalization of chitosan by a free radical reaction: Characterization, antioxidant and antibacterial potential.
    Moreno-Vásquez MJ; Valenzuela-Buitimea EL; Plascencia-Jatomea M; Encinas-Encinas JC; Rodríguez-Félix F; Sánchez-Valdes S; Rosas-Burgos EC; Ocaño-Higuera VM; Graciano-Verdugo AZ
    Carbohydr Polym; 2017 Jan; 155():117-127. PubMed ID: 27702495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reaction pH and protein affect the oxidation products of beta-pentagalloyl glucose.
    Chen Y; Hagerman AE
    Free Radic Res; 2005 Feb; 39(2):117-24. PubMed ID: 15763959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.