BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 26471732)

  • 1. Mg(2+) shifts ligand-mediated folding of a riboswitch from induced-fit to conformational selection.
    Suddala KC; Wang J; Hou Q; Walter NG
    J Am Chem Soc; 2015 Nov; 137(44):14075-83. PubMed ID: 26471732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The dynamic nature of RNA as key to understanding riboswitch mechanisms.
    Haller A; Soulière MF; Micura R
    Acc Chem Res; 2011 Dec; 44(12):1339-48. PubMed ID: 21678902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single transcriptional and translational preQ1 riboswitches adopt similar pre-folded ensembles that follow distinct folding pathways into the same ligand-bound structure.
    Suddala KC; Rinaldi AJ; Feng J; Mustoe AM; Eichhorn CD; Liberman JA; Wedekind JE; Al-Hashimi HM; Brooks CL; Walter NG
    Nucleic Acids Res; 2013 Dec; 41(22):10462-75. PubMed ID: 24003028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-Molecule FRET Kinetics of the Mn
    Sung HL; Nesbitt DJ
    J Phys Chem B; 2019 Mar; 123(9):2005-2015. PubMed ID: 30739441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Observation of preQ
    Warnasooriya C; Ling C; Belashov IA; Salim M; Wedekind JE; Ermolenko DN
    RNA Biol; 2019 Sep; 16(9):1086-1092. PubMed ID: 30328747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-molecule FRET reveals the energy landscape of the full-length SAM-I riboswitch.
    Manz C; Kobitski AY; Samanta A; Keller BG; Jäschke A; Nienhaus GU
    Nat Chem Biol; 2017 Nov; 13(11):1172-1178. PubMed ID: 28920931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequential Folding of the Nickel/Cobalt Riboswitch Is Facilitated by a Conformational Intermediate: Insights from Single-Molecule Kinetics and Thermodynamics.
    Sung HL; Nesbitt DJ
    J Phys Chem B; 2020 Aug; 124(34):7348-7360. PubMed ID: 32790410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of lysine binding residues in the global folding of the lysC riboswitch.
    Smith-Peter E; Lamontagne AM; Lafontaine DA
    RNA Biol; 2015; 12(12):1372-82. PubMed ID: 26403229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microsecond Folding of preQ
    Sarkar B; Ishii K; Tahara T
    J Am Chem Soc; 2021 Jun; 143(21):7968-7978. PubMed ID: 34013733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular mechanism for preQ1-II riboswitch function revealed by molecular dynamics.
    Aytenfisu AH; Liberman JA; Wedekind JE; Mathews DH
    RNA; 2015 Nov; 21(11):1898-907. PubMed ID: 26370581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational capture of the SAM-II riboswitch.
    Haller A; Rieder U; Aigner M; Blanchard SC; Micura R
    Nat Chem Biol; 2011 Jun; 7(6):393-400. PubMed ID: 21532598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mg(2+)-induced conformational changes in the btuB riboswitch from E. coli.
    Choudhary PK; Sigel RK
    RNA; 2014 Jan; 20(1):36-45. PubMed ID: 24243114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linking folding dynamics and function of SAM/SAH riboswitches at the single molecule level.
    Liao TW; Huang L; Wilson TJ; Ganser LR; Lilley DMJ; Ha T
    Nucleic Acids Res; 2023 Sep; 51(17):8957-8969. PubMed ID: 37522343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observation of long-range tertiary interactions during ligand binding by the TPP riboswitch aptamer.
    Duesterberg VK; Fischer-Hwang IT; Perez CF; Hogan DW; Block SM
    Elife; 2015 Dec; 4():. PubMed ID: 26709838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-Molecule Approaches for the Characterization of Riboswitch Folding Mechanisms.
    Boudreault J; Perez-Gonzalez DC; Penedo JC; Lafontaine DA
    Methods Mol Biol; 2015; 1334():101-7. PubMed ID: 26404145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pseudoknot preorganization of the preQ1 class I riboswitch.
    Santner T; Rieder U; Kreutz C; Micura R
    J Am Chem Soc; 2012 Jul; 134(29):11928-31. PubMed ID: 22775200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ligand-Induced Stabilization of a Duplex-like Architecture Is Crucial for the Switching Mechanism of the SAM-III Riboswitch.
    Suresh G; Srinivasan H; Nanda S; Priyakumar UD
    Biochemistry; 2016 Jun; 55(24):3349-60. PubMed ID: 27249101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural analysis of a class III preQ1 riboswitch reveals an aptamer distant from a ribosome-binding site regulated by fast dynamics.
    Liberman JA; Suddala KC; Aytenfisu A; Chan D; Belashov IA; Salim M; Mathews DH; Spitale RC; Walter NG; Wedekind JE
    Proc Natl Acad Sci U S A; 2015 Jul; 112(27):E3485-94. PubMed ID: 26106162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Riboswitch structure and dynamics by smFRET microscopy.
    Suddala KC; Walter NG
    Methods Enzymol; 2014; 549():343-73. PubMed ID: 25432756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ligand Modulates Cross-Coupling between Riboswitch Folding and Transcriptional Pausing.
    Widom JR; Nedialkov YA; Rai V; Hayes RL; Brooks CL; Artsimovitch I; Walter NG
    Mol Cell; 2018 Nov; 72(3):541-552.e6. PubMed ID: 30388413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.