These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. In Vivo Evaluation of Indium-111-Labeled 800CW as a Necrosis-Avid Contrast Agent. Stroet MCM; de Blois E; Stuurman DC; de Ridder CMA; Haeck J; Seimbille Y; Mezzanotte L; de Jong M; Löwik CWGM; Panth KM Mol Imaging Biol; 2020 Oct; 22(5):1333-1341. PubMed ID: 32514888 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of four affibody-based near-infrared fluorescent probes for optical imaging of epidermal growth factor receptor positive tumors. Qi S; Miao Z; Liu H; Xu Y; Feng Y; Cheng Z Bioconjug Chem; 2012 Jun; 23(6):1149-56. PubMed ID: 22621238 [TBL] [Abstract][Full Text] [Related]
5. Rapid Assessment of Bio-distribution and Antitumor Activity of the Photosensitizer Bremachlorin in a Murine PDAC Model: Detection of PDT-induced Tumor Necrosis by IRDye® 800CW Carboxylate, Using Whole-Body Fluorescent Imaging. McMorrow R; de Bruijn HS; Que I; Stuurman DC; de Ridder CMA; Doukas M; Robinson DJ; Mezzanotte L; Lowik CWGM Mol Imaging Biol; 2024 Aug; 26(4):616-627. PubMed ID: 38890241 [TBL] [Abstract][Full Text] [Related]
6. Optical imaging of gastric cancer with near-infrared heptamethine carbocyanine fluorescence dyes. Zhao N; Zhang C; Zhao Y; Bai B; An J; Zhang H; Wu JB; Shi C Oncotarget; 2016 Aug; 7(35):57277-57289. PubMed ID: 27329598 [TBL] [Abstract][Full Text] [Related]
7. Dual-wavelength imaging of tumor progression by activatable and targeting near-infrared fluorescent probes in a bioluminescent breast cancer model. Xie BW; Mol IM; Keereweer S; van Beek ER; Que I; Snoeks TJ; Chan A; Kaijzel EL; Löwik CW PLoS One; 2012; 7(2):e31875. PubMed ID: 22348134 [TBL] [Abstract][Full Text] [Related]
8. In vivo NIRF imaging-guided delivery of a novel NGR-VEGI fusion protein for targeting tumor vasculature. Ma W; Li G; Wang J; Yang W; Zhang Y; Conti PS; Chen K Amino Acids; 2014 Dec; 46(12):2721-32. PubMed ID: 25182731 [TBL] [Abstract][Full Text] [Related]
9. Fluorescence-guided resection of experimental malignant glioma using cetuximab-IRDye 800CW. Warram JM; de Boer E; Korb M; Hartman Y; Kovar J; Markert JM; Gillespie GY; Rosenthal EL Br J Neurosurg; 2015; 29(6):850-8. PubMed ID: 26073144 [TBL] [Abstract][Full Text] [Related]
10. Dual-labeled trastuzumab-based imaging agent for the detection of human epidermal growth factor receptor 2 overexpression in breast cancer. Sampath L; Kwon S; Ke S; Wang W; Schiff R; Mawad ME; Sevick-Muraca EM J Nucl Med; 2007 Sep; 48(9):1501-10. PubMed ID: 17785729 [TBL] [Abstract][Full Text] [Related]
11. Near-infrared fluorescent deoxyglucose analogue for tumor optical imaging in cell culture and living mice. Cheng Z; Levi J; Xiong Z; Gheysens O; Keren S; Chen X; Gambhir SS Bioconjug Chem; 2006; 17(3):662-9. PubMed ID: 16704203 [TBL] [Abstract][Full Text] [Related]
12. Delta-Opioid Receptor (δOR) Targeted Near-Infrared Fluorescent Agent for Imaging of Lung Cancer: Synthesis and Evaluation In Vitro and In Vivo. Cohen AS; Patek R; Enkemann SA; Johnson JO; Chen T; Toloza E; Vagner J; Morse DL Bioconjug Chem; 2016 Feb; 27(2):427-38. PubMed ID: 26488422 [TBL] [Abstract][Full Text] [Related]
13. Fast Noninvasive Measurement of Brown Adipose Tissue in Living Mice by Near-Infrared Fluorescence and Photoacoustic Imaging. Li W; Ma J; Jiang Q; Zhang T; Qi Q; Cheng Y Anal Chem; 2020 Mar; 92(5):3787-3794. PubMed ID: 32066237 [TBL] [Abstract][Full Text] [Related]
14. A Mouse Model of Fluorescent Protein-expressing Disseminated Peritoneal Lymphoma for Fluorescence-guided Surgery. Matsumoto T; Suetsugu A; Hasegawa K; Nakamura M; Shibata Y; Aoki H; Kunisada T; Tsurumi H; Shimizu M; Bouvet M; Hoffman RM Anticancer Res; 2016 Sep; 36(9):4483-7. PubMed ID: 27630285 [TBL] [Abstract][Full Text] [Related]
15. A General Approach to Design Dual Ratiometric Fluorescent and Photoacoustic Probes for Quantitatively Visualizing Tumor Hypoxia Levels In Vivo. Zhang S; Chen H; Wang L; Qin X; Jiang BP; Ji SC; Shen XC; Liang H Angew Chem Int Ed Engl; 2022 Feb; 61(7):e202107076. PubMed ID: 34227715 [TBL] [Abstract][Full Text] [Related]
16. Molecular imaging of tumor-infiltrating macrophages in a preclinical mouse model of breast cancer. Sun X; Gao D; Gao L; Zhang C; Yu X; Jia B; Wang F; Liu Z Theranostics; 2015; 5(6):597-608. PubMed ID: 25825599 [TBL] [Abstract][Full Text] [Related]
17. Characterization and performance of a near-infrared 2-deoxyglucose optical imaging agent for mouse cancer models. Kovar JL; Volcheck W; Sevick-Muraca E; Simpson MA; Olive DM Anal Biochem; 2009 Jan; 384(2):254-62. PubMed ID: 18938129 [TBL] [Abstract][Full Text] [Related]
18. Time-domain in vivo near infrared fluorescence imaging for evaluation of matriptase as a potential target for the development of novel, inhibitor-based tumor therapies. Napp J; Dullin C; Müller F; Uhland K; Petri JB; van de Locht A; Steinmetzer T; Alves F Int J Cancer; 2010 Oct; 127(8):1958-74. PubMed ID: 20473895 [TBL] [Abstract][Full Text] [Related]
19. In vivo near-infrared fluorescence imaging of FAP-expressing tumors with activatable FAP-targeted, single-chain Fv-immunoliposomes. Rüger R; Tansi FL; Rabenhold M; Steiniger F; Kontermann RE; Fahr A; Hilger I J Control Release; 2014 Jul; 186():1-10. PubMed ID: 24810115 [TBL] [Abstract][Full Text] [Related]
20. Validation of nanobody and antibody based in vivo tumor xenograft NIRF-imaging experiments in mice using ex vivo flow cytometry and microscopy. Bannas P; Lenz A; Kunick V; Fumey W; Rissiek B; Schmid J; Haag F; Leingärtner A; Trepel M; Adam G; Koch-Nolte F J Vis Exp; 2015 Apr; (98):e52462. PubMed ID: 25867711 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]