BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 26472048)

  • 1. 3D printed nanocomposite matrix for the study of breast cancer bone metastasis.
    Zhu W; Holmes B; Glazer RI; Zhang LG
    Nanomedicine; 2016 Jan; 12(1):69-79. PubMed ID: 26472048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering a biomimetic three-dimensional nanostructured bone model for breast cancer bone metastasis study.
    Zhu W; Wang M; Fu Y; Castro NJ; Fu SW; Zhang LG
    Acta Biomater; 2015 Mar; 14():164-74. PubMed ID: 25528534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mammary fibroblasts remodel fibrillar collagen microstructure in a biomimetic nanocomposite hydrogel.
    Liu C; Chiang B; Lewin Mejia D; Luker KE; Luker GD; Lee A
    Acta Biomater; 2019 Jan; 83():221-232. PubMed ID: 30414485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyurethane foam scaffold as in vitro model for breast cancer bone metastasis.
    Angeloni V; Contessi N; De Marco C; Bertoldi S; Tanzi MC; Daidone MG; Farè S
    Acta Biomater; 2017 Nov; 63():306-316. PubMed ID: 28927931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of collagen-based scaffolds to simulate prostate cancer bone metastases with potential for evaluating delivery of nanoparticulate gene therapeutics.
    Fitzgerald KA; Guo J; Tierney EG; Curtin CM; Malhotra M; Darcy R; O'Brien FJ; O'Driscoll CM
    Biomaterials; 2015 Oct; 66():53-66. PubMed ID: 26196533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A three-dimensional spheroidal cancer model based on PEG-fibrinogen hydrogel microspheres.
    Pradhan S; Clary JM; Seliktar D; Lipke EA
    Biomaterials; 2017 Jan; 115():141-154. PubMed ID: 27889665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osteomimetic matrix components alter cell migration and drug response in a 3D tumour-engineered osteosarcoma model.
    Pavlou M; Shah M; Gikas P; Briggs T; Roberts SJ; Cheema U
    Acta Biomater; 2019 Sep; 96():247-257. PubMed ID: 31302294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 3D printed nano bone matrix for characterization of breast cancer cell and osteoblast interactions.
    Zhu W; Castro NJ; Cui H; Zhou X; Boualam B; McGrane R; Glazer RI; Zhang LG
    Nanotechnology; 2016 Aug; 27(31):315103. PubMed ID: 27346678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-air production of 3D co-culture tumor spheroid hydrogels for expedited drug screening.
    Antunes J; Gaspar VM; Ferreira L; Monteiro M; Henrique R; Jerónimo C; Mano JF
    Acta Biomater; 2019 Aug; 94():392-409. PubMed ID: 31200118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue-engineered nanoclay-based 3D in vitro breast cancer model for studying breast cancer metastasis to bone.
    Kar S; Molla MS; Katti DR; Katti KS
    J Tissue Eng Regen Med; 2019 Feb; 13(2):119-130. PubMed ID: 30466156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling the breast cancer bone metastatic niche in complex three-dimensional cocultures.
    Marlow R; Dontu G
    Methods Mol Biol; 2015; 1293():213-20. PubMed ID: 26040690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D Bioprinting a Cell-Laden Bone Matrix for Breast Cancer Metastasis Study.
    Zhou X; Zhu W; Nowicki M; Miao S; Cui H; Holmes B; Glazer RI; Zhang LG
    ACS Appl Mater Interfaces; 2016 Nov; 8(44):30017-30026. PubMed ID: 27766838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel 3D in vitro metastasis model elucidates differential invasive strategies during and after breaching basement membrane.
    Guzman A; Sánchez Alemany V; Nguyen Y; Zhang CR; Kaufman LJ
    Biomaterials; 2017 Jan; 115():19-29. PubMed ID: 27880891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering a Novel 3D Printed Vascularized Tissue Model for Investigating Breast Cancer Metastasis to Bone.
    Cui H; Esworthy T; Zhou X; Hann SY; Glazer RI; Li R; Zhang LG
    Adv Healthc Mater; 2020 Aug; 9(15):e1900924. PubMed ID: 31846231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro bone metastasis dwelling in a 3D bioengineered niche.
    Han W; El Botty R; Montaudon E; Malaquin L; Deschaseaux F; Espagnolle N; Marangoni E; Cottu P; Zalcman G; Parrini MC; Assayag F; Sensebe L; Silberzan P; Vincent-Salomon A; Dutertre G; Roman-Roman S; Descroix S; Camonis J
    Biomaterials; 2021 Feb; 269():120624. PubMed ID: 33421710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomimetic 3D Clusters Using Human Adipose Derived Mesenchymal Stem Cells and Breast Cancer Cells: A Study on Migration and Invasion of Breast Cancer Cells.
    Park MH; Song B; Hong S; Kim SH; Lee K
    Mol Pharm; 2016 Jul; 13(7):2204-13. PubMed ID: 27163860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro microenvironments to study breast cancer bone colonisation.
    Taubenberger AV
    Adv Drug Deliv Rev; 2014 Dec; 79-80():135-44. PubMed ID: 25453260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Attraction and Compaction of Migratory Breast Cancer Cells by Bone Matrix Proteins through Tumor-Osteocyte Interactions.
    Chen A; Wang L; Liu S; Wang Y; Liu Y; Wang M; Nakshatri H; Li BY; Yokota H
    Sci Rep; 2018 Apr; 8(1):5420. PubMed ID: 29615735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular insights into prostate cancer progression: the missing link of tumor microenvironment.
    Chung LW; Baseman A; Assikis V; Zhau HE
    J Urol; 2005 Jan; 173(1):10-20. PubMed ID: 15592017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Target specific delivery of anticancer drug in silk fibroin based 3D distribution model of bone-breast cancer cells.
    Subia B; Dey T; Sharma S; Kundu SC
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2269-79. PubMed ID: 25557227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.