These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 26472128)

  • 21. The host antimicrobial peptide Bac71-35 binds to bacterial ribosomal proteins and inhibits protein synthesis.
    Mardirossian M; Grzela R; Giglione C; Meinnel T; Gennaro R; Mergaert P; Scocchi M
    Chem Biol; 2014 Dec; 21(12):1639-47. PubMed ID: 25455857
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of novel antibacterial peptides that kill resistant isolates.
    Cudic M; Condie BA; Weiner DJ; Lysenko ES; Xiang ZQ; Insug O; Bulet P; Otvos L
    Peptides; 2002 Dec; 23(12):2071-83. PubMed ID: 12535685
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An insect antibacterial peptide-based drug delivery system.
    Otvos L; Cudic M; Chua BY; Deliyannis G; Jackson DC
    Mol Pharm; 2004; 1(3):220-32. PubMed ID: 15981925
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of distal sugar and interglycosidic linkage of disaccharides on the activity of proline rich antimicrobial glycopeptides.
    Lele DS; Dwivedi R; Kumari S; Kaur KJ
    J Pept Sci; 2015 Nov; 21(11):833-44. PubMed ID: 26424213
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Allosteric coupling between the lid and interdomain linker in DnaK revealed by inhibitor binding studies.
    Liebscher M; Roujeinikova A
    J Bacteriol; 2009 Mar; 191(5):1456-62. PubMed ID: 19103929
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Methods for Elucidating the Mechanism of Action of Proline-Rich and Other Non-lytic Antimicrobial Peptides.
    Benincasa M; Runti G; Mardirossian M; Gennaro R; Scocchi M
    Methods Mol Biol; 2017; 1548():283-295. PubMed ID: 28013512
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Troubleshooting coupled in vitro transcription-translation system derived from Escherichia coli cells: synthesis of high-yield fully active proteins.
    Iskakova MB; Szaflarski W; Dreyfus M; Remme J; Nierhaus KH
    Nucleic Acids Res; 2006; 34(19):e135. PubMed ID: 17038334
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Correlating uptake and activity of proline-rich antimicrobial peptides in Escherichia coli.
    Holfeld L; Hoffmann R; Knappe D
    Anal Bioanal Chem; 2017 Sep; 409(23):5581-5592. PubMed ID: 28717895
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cyclization of pyrrhocoricin retains structural elements crucial for the antimicrobial activity of the native peptide.
    Rosengren KJ; Göransson U; Otvos L; Craik DJ
    Biopolymers; 2004; 76(5):446-58. PubMed ID: 15478127
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Systematic Analysis of Intracellular-targeting Antimicrobial Peptides, Bactenecin 7, Hybrid of Pleurocidin and Dermaseptin, Proline-Arginine-rich Peptide, and Lactoferricin B, by Using Escherichia coli Proteome Microarrays.
    Ho YH; Shah P; Chen YW; Chen CS
    Mol Cell Proteomics; 2016 Jun; 15(6):1837-47. PubMed ID: 26902206
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cellular uptake of apidaecin 1b and related analogs in Gram-negative bacteria reveals novel antibacterial mechanism for proline-rich antimicrobial peptides.
    Berthold N; Hoffmann R
    Protein Pept Lett; 2014 Apr; 21(4):391-8. PubMed ID: 24164266
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Polyamines and antibiotic effects on translation.
    Goldemberg SH; Algranati ID
    Med Biol; 1981 Dec; 59(5-6):360-7. PubMed ID: 7040833
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phospholipid composition of the outer membrane of Escherichia coli influences its susceptibility against antimicrobial peptide apidaecin 1b.
    Schmidt R; Yonghong D; Hoffmann R
    Diagn Microbiol Infect Dis; 2018 Apr; 90(4):316-323. PubMed ID: 29329756
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of the Escherichia coli SbmA in the antimicrobial activity of proline-rich peptides.
    Mattiuzzo M; Bandiera A; Gennaro R; Benincasa M; Pacor S; Antcheva N; Scocchi M
    Mol Microbiol; 2007 Oct; 66(1):151-63. PubMed ID: 17725560
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The proteome targets of intracellular targeting antimicrobial peptides.
    Shah P; Hsiao FS; Ho YH; Chen CS
    Proteomics; 2016 Apr; 16(8):1225-37. PubMed ID: 26648572
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Insect peptides with improved protease-resistance protect mice against bacterial infection.
    Otvos L; Bokonyi K; Varga I; Otvos BI; Hoffmann R; Ertl HC; Wade JD; McManus AM; Craik DJ; Bulet P
    Protein Sci; 2000 Apr; 9(4):742-9. PubMed ID: 10794416
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Antibacterial peptides isolated from insects.
    Otvos L
    J Pept Sci; 2000 Oct; 6(10):497-511. PubMed ID: 11071264
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Diverse effects of residues 74-78 in ribosomal protein S12 on decoding and antibiotic sensitivity.
    Agarwal D; O'Connor M
    Biochem Biophys Res Commun; 2014 Mar; 445(2):475-9. PubMed ID: 24530394
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Proline-rich antimicrobial peptides targeting protein synthesis.
    Graf M; Mardirossian M; Nguyen F; Seefeldt AC; Guichard G; Scocchi M; Innis CA; Wilson DN
    Nat Prod Rep; 2017 Jul; 34(7):702-711. PubMed ID: 28537612
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Secretory leukocyte protease inhibitor binding to mRNA and DNA as a possible cause of toxicity to Escherichia coli.
    Miller KW; Evans RJ; Eisenberg SP; Thompson RC
    J Bacteriol; 1989 Apr; 171(4):2166-72. PubMed ID: 2467900
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.