BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 26472217)

  • 1. Mechanics of collagen fibrils: A two-scale discrete damage model.
    Linka K; Itskov M
    J Mech Behav Biomed Mater; 2016 May; 58():163-172. PubMed ID: 26472217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrastructural response of tendon to excessive level or duration of tensile load supports that collagen fibrils are mechanically continuous.
    Hijazi KM; Singfield KL; Veres SP
    J Mech Behav Biomed Mater; 2019 Sep; 97():30-40. PubMed ID: 31085458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A structurally based stress-stretch relationship for tendon and ligament.
    Hurschler C; Loitz-Ramage B; Vanderby R
    J Biomech Eng; 1997 Nov; 119(4):392-9. PubMed ID: 9407276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collagen fibrils in functionally distinct tendons have differing structural responses to tendon rupture and fatigue loading.
    Herod TW; Chambers NC; Veres SP
    Acta Biomater; 2016 Sep; 42():296-307. PubMed ID: 27321189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repeated subrupture overload causes progression of nanoscaled discrete plasticity damage in tendon collagen fibrils.
    Veres SP; Harrison JM; Lee JM
    J Orthop Res; 2013 May; 31(5):731-7. PubMed ID: 23255142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative phase measurements of tendon collagen fibres.
    Maciel D; Veres SP; Kreuzer HJ; Kreplak L
    J Biophotonics; 2017 Jan; 10(1):111-117. PubMed ID: 26824333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advanced glycation end-product cross-linking inhibits biomechanical plasticity and characteristic failure morphology of native tendon.
    Lee JM; Veres SP
    J Appl Physiol (1985); 2019 Apr; 126(4):832-841. PubMed ID: 30653412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macrophage-like U937 cells recognize collagen fibrils with strain-induced discrete plasticity damage.
    Veres SP; Brennan-Pierce EP; Lee JM
    J Biomed Mater Res A; 2015 Jan; 103(1):397-408. PubMed ID: 24616426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collagen fibrils from both positional and energy-storing tendons exhibit increased amounts of denatured collagen when stretched beyond the yield point.
    Lin AH; Slater CA; Martinez CJ; Eppell SJ; Yu SM; Weiss JA
    Acta Biomater; 2023 Jan; 155():461-470. PubMed ID: 36400348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Collagen structure of tendon relates to function.
    Franchi M; Trirè A; Quaranta M; Orsini E; Ottani V
    ScientificWorldJournal; 2007 Mar; 7():404-20. PubMed ID: 17450305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-scale modeling of soft fibrous tissues based on proteoglycan mechanics.
    Linka K; Khiêm VN; Itskov M
    J Biomech; 2016 Aug; 49(12):2349-57. PubMed ID: 26970885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MMP-9 selectively cleaves non-D-banded material on collagen fibrils with discrete plasticity damage in mechanically-overloaded tendon.
    Baldwin SJ; Kreplak L; Lee JM
    J Mech Behav Biomed Mater; 2019 Jul; 95():67-75. PubMed ID: 30954916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new longitudinal variation in the structure of collagen fibrils and its relationship to locations of mechanical damage susceptibility.
    Baldwin SJ; Sampson J; Peacock CJ; Martin ML; Veres SP; Lee JM; Kreplak L
    J Mech Behav Biomed Mater; 2020 Oct; 110():103849. PubMed ID: 32501220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A microstructural model of tendon failure.
    Gregory J; Hazel AL; Shearer T
    J Mech Behav Biomed Mater; 2021 Oct; 122():104665. PubMed ID: 34311323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ fibril stretch and sliding is location-dependent in mouse supraspinatus tendons.
    Connizzo BK; Sarver JJ; Han L; Soslowsky LJ
    J Biomech; 2014 Dec; 47(16):3794-8. PubMed ID: 25468300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrastructure of tendon rupture depends on strain rate and tendon type.
    Chambers NC; Herod TW; Veres SP
    J Orthop Res; 2018 Nov; 36(11):2842-2850. PubMed ID: 29901228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tendon response to tensile stress: an ultrastructural investigation of collagen:proteoglycan interactions in stressed tendon.
    Cribb AM; Scott JE
    J Anat; 1995 Oct; 187 ( Pt 2)(Pt 2):423-8. PubMed ID: 7592005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanically overloading collagen fibrils uncoils collagen molecules, placing them in a stable, denatured state.
    Veres SP; Harrison JM; Lee JM
    Matrix Biol; 2014 Jan; 33():54-9. PubMed ID: 23880369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing collagen fibrils molecular damage after a single stretch-release cycle.
    Iqbal SMA; Deska-Gauthier D; Kreplak L
    Soft Matter; 2019 Aug; 15(30):6237-6246. PubMed ID: 31334527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A fibril-based structural constitutive theory reveals the dominant role of network characteristics on the mechanical behavior of fibroblast-compacted collagen gels.
    Feng Z; Ishiguro Y; Fujita K; Kosawada T; Nakamura T; Sato D; Kitajima T; Umezu M
    Biomaterials; 2015 Oct; 67():365-81. PubMed ID: 26247391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.