These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Identification of animal glue and hen-egg yolk in paintings by use of enzyme-linked immunosorbent assay (ELISA). Palmieri M; Vagnini M; Pitzurra L; Brunetti BG; Cartechini L Anal Bioanal Chem; 2013 Jul; 405(19):6365-71. PubMed ID: 23722889 [TBL] [Abstract][Full Text] [Related]
4. Development of an analytical protocol for a fast, sensitive and specific protein recognition in paintings by enzyme-linked immunosorbent assay (ELISA). Palmieri M; Vagnini M; Pitzurra L; Rocchi P; Brunetti BG; Sgamellotti A; Cartechini L Anal Bioanal Chem; 2011 Mar; 399(9):3011-23. PubMed ID: 21170522 [TBL] [Abstract][Full Text] [Related]
5. Micro-Raman analysis of the pigments on painted pottery figurines from two tombs of the Northern Wei Dynasty in Luoyang. Liu Z; Han Y; Han L; Cheng Y; Ma Y; Fang L Spectrochim Acta A Mol Biomol Spectrosc; 2013 May; 109():42-6. PubMed ID: 23501716 [TBL] [Abstract][Full Text] [Related]
6. Attenuated total reflection micro FTIR characterisation of pigment-binder interaction in reconstructed paint films. Mazzeo R; Prati S; Quaranta M; Joseph E; Kendix E; Galeotti M Anal Bioanal Chem; 2008 Sep; 392(1-2):65-76. PubMed ID: 18454281 [TBL] [Abstract][Full Text] [Related]
7. Surface-enhanced Raman spectroscopy studies of yellow organic dyestuffs and lake pigments in oil paint. Mayhew HE; Fabian DM; Svoboda SA; Wustholz KL Analyst; 2013 Aug; 138(16):4493-9. PubMed ID: 23722232 [TBL] [Abstract][Full Text] [Related]
8. A spectroscopic study of Brazilwood paints in medieval books of hours. Melo MJ; Otero V; Vitorino T; Araújo R; Muralha VS; Lemos A; Picollo M Appl Spectrosc; 2014; 68(4):434-43. PubMed ID: 24694700 [TBL] [Abstract][Full Text] [Related]
9. Synthetic organic pigments of the 20th and 21st century relevant to artist's paints: Raman spectra reference collection. Scherrer NC; Zumbuehl S; Delavy F; Fritsch A; Kuehnen R Spectrochim Acta A Mol Biomol Spectrosc; 2009 Aug; 73(3):505-24. PubMed ID: 19136293 [TBL] [Abstract][Full Text] [Related]
10. Raman spectroscopic signatures of the yellow and ochre paints from artist palette of J. Matejko (1838-1893). Żmuda-Trzebiatowska I; Wachowiak M; Klisińska-Kopacz A; Trykowski G; Śliwiński G Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt B():793-801. PubMed ID: 25448977 [TBL] [Abstract][Full Text] [Related]
11. Ochres and earths: matrix and chromophores characterization of 19th and 20th century artist materials. Montagner C; Sanches D; Pedroso J; Melo MJ; Vilarigues M Spectrochim Acta A Mol Biomol Spectrosc; 2013 Feb; 103():409-16. PubMed ID: 23274225 [TBL] [Abstract][Full Text] [Related]
12. Finnish wallpaper pigments in the 18th-19th century: presence of KFe3(CrO4)2(OH)6 and odd pigment mixtures. Castro K; Knuutinen U; de Vallejuelo SF; Irazola M; Madariaga JM Spectrochim Acta A Mol Biomol Spectrosc; 2013 Apr; 106():104-9. PubMed ID: 23376265 [TBL] [Abstract][Full Text] [Related]
13. Physico-chemical characterization of protein-pigment interactions in tempera paint reconstructions: casein/cinnabar and albumin/cinnabar. Duce C; Ghezzi L; Onor M; Bonaduce I; Colombini MP; Tine' MR; Bramanti E Anal Bioanal Chem; 2012 Feb; 402(6):2183-93. PubMed ID: 22231511 [TBL] [Abstract][Full Text] [Related]
14. ATR-FT-IR spectroscopy in the region of 500-230 cm(-1) for identification of inorganic red pigments. Vahur S; Knuutinen U; Leito I Spectrochim Acta A Mol Biomol Spectrosc; 2009 Aug; 73(4):764-71. PubMed ID: 19409839 [TBL] [Abstract][Full Text] [Related]
15. Raman identification of yellow synthetic organic pigments in modern and contemporary paintings: reference spectra and case studies. Ropret P; Centeno SA; Bukovec P Spectrochim Acta A Mol Biomol Spectrosc; 2008 Feb; 69(2):486-97. PubMed ID: 17590389 [TBL] [Abstract][Full Text] [Related]
16. Classification of protein binders in artist's paints by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry: an evaluation of principal component analysis (PCA) and soft independent modelling of class analogy (SIMCA). Fremout W; Kuckova S; Crhova M; Sanyova J; Saverwyns S; Hynek R; Kodicek M; Vandenabeele P; Moens L Rapid Commun Mass Spectrom; 2011 Jun; 25(11):1631-40. PubMed ID: 21594939 [TBL] [Abstract][Full Text] [Related]
17. [Identification, using x-diffractometry, of chromium, lead and zinc compounds in pigments of protective paints]. Altieri A; Burragato F; Iannaccone A Ann Ist Super Sanita; 1977; 13(1-2):315-9. PubMed ID: 603129 [TBL] [Abstract][Full Text] [Related]
18. Formulation effects on the release of silica dioxide nanoparticles from paint debris to water. Zuin S; Massari A; Ferrari A; Golanski L Sci Total Environ; 2014 Apr; 476-477():298-307. PubMed ID: 24468504 [TBL] [Abstract][Full Text] [Related]
19. Non-destructive micro-analytical differentiation of copper pigments in paint layers of works of art using laboratory-based techniques. Svarcová S; Cermáková Z; Hradilová J; Bezdička P; Hradil D Spectrochim Acta A Mol Biomol Spectrosc; 2014 Nov; 132():514-25. PubMed ID: 24892529 [TBL] [Abstract][Full Text] [Related]
20. Characterization of Green Paints in Ming and Qianlong Dynasties' Lin'xi Pavilion by Complimentary Techniques. Wiggins MB; Liu M; Matsen C; Liu C; Booksh KS Molecules; 2021 Jan; 26(2):. PubMed ID: 33430485 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]