These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 26472383)

  • 1. A study of internal energy relaxation in shocks using molecular dynamics based models.
    Li Z; Parsons N; Levin DA
    J Chem Phys; 2015 Oct; 143(14):144501. PubMed ID: 26472383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling of molecular nitrogen collisions and dissociation processes for direct simulation Monte Carlo.
    Parsons N; Levin DA; van Duin AC; Zhu T
    J Chem Phys; 2014 Dec; 141(23):234307. PubMed ID: 25527935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An improved potential energy surface and multi-temperature quasiclassical trajectory calculations of N2 + N2 dissociation reactions.
    Bender JD; Valentini P; Nompelis I; Paukku Y; Varga Z; Truhlar DG; Schwartzentruber T; Candler GV
    J Chem Phys; 2015 Aug; 143(5):054304. PubMed ID: 26254650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ab initio state-specific N
    Luo H; Kulakhmetov M; Alexeenko A
    J Chem Phys; 2017 Feb; 146(7):074303. PubMed ID: 28228027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissociation cross sections for N
    Mankodi TK; Bhandarkar UV; Puranik BP
    J Chem Phys; 2017 May; 146(20):204307. PubMed ID: 28571362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ab initio-informed maximum entropy modeling of rovibrational relaxation and state-specific dissociation with application to the O2 + O system.
    Kulakhmetov M; Gallis M; Alexeenko A
    J Chem Phys; 2016 May; 144(17):174302. PubMed ID: 27155635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An ab initio chemical reaction model for the direct simulation Monte Carlo study of non-equilibrium nitrogen flows.
    Mankodi TK; Bhandarkar UV; Puranik BP
    J Chem Phys; 2017 Aug; 147(8):084305. PubMed ID: 28863514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal relaxation of molecular oxygen in collisions with nitrogen atoms.
    Andrienko DA; Boyd ID
    J Chem Phys; 2016 Jul; 145(1):014309. PubMed ID: 27394110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rovibrational energy transfer and dissociation in O2-O collisions.
    Andrienko DA; Boyd ID
    J Chem Phys; 2016 Mar; 144(10):104301. PubMed ID: 26979687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rovibrational internal energy transfer and dissociation of N2(1Σg+)-N(4S(u)) system in hypersonic flows.
    Panesi M; Jaffe RL; Schwenke DW; Magin TE
    J Chem Phys; 2013 Jan; 138(4):044312. PubMed ID: 23387589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate reproducing kernel-based potential energy surfaces for the triplet ground states of N
    Koner D; San Vicente Veliz JC; Bemish RJ; Meuwly M
    Phys Chem Chem Phys; 2020 Sep; 22(33):18488-18498. PubMed ID: 32779667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of a coarse-grain quasi-classical trajectory method. I. Theory and application to N
    Macdonald RL; Jaffe RL; Schwenke DW; Panesi M
    J Chem Phys; 2018 Feb; 148(5):054309. PubMed ID: 29421898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vibrational energy transfer and dissociation in O
    Andrienko DA; Boyd ID
    J Chem Phys; 2018 Feb; 148(8):084309. PubMed ID: 29495757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vibrational state-specific model for dissociation and recombination of the O
    Pan TJ; Wilson TJ; Stephani KA
    J Chem Phys; 2019 Feb; 150(7):074305. PubMed ID: 30795672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rovibrationally state-specific collision model for the O
    Pan TJ; Stephani KA
    J Chem Phys; 2021 Mar; 154(10):104306. PubMed ID: 33722033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics based chemistry models of hypervelocity collisions of O(3P) + SO2(X, 1A1) in DSMC.
    Parsons N; Levin DA; van Duin AC
    J Chem Phys; 2013 Jan; 138(4):044316. PubMed ID: 23387593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of a coarse-grain quasi-classical trajectory method. II. Comparison against the direct molecular simulation method.
    Macdonald RL; Grover MS; Schwartzentruber TE; Panesi M
    J Chem Phys; 2018 Feb; 148(5):054310. PubMed ID: 29421878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the effect of vibrational excitation in reaction dynamics: the Ne + H2(+)(v = 0-17, j = 1) → NeH(+) + H, Ne + H(+) + H proton transfer and dissociation cross sections.
    Gamallo P; Martínez R; Sierra JD; González M
    Phys Chem Chem Phys; 2014 Apr; 16(14):6641-8. PubMed ID: 24577045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exhaustive state-to-state cross sections for reactive molecular collisions from importance sampling simulation and a neural network representation.
    Koner D; Unke OT; Boe K; Bemish RJ; Meuwly M
    J Chem Phys; 2019 Jun; 150(21):211101. PubMed ID: 31176351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of reagent rotation and vibration on H + OH (υ, j)→ O + H2.
    Li X; Arasa C; van Hemert MC; van Dishoeck EF
    J Phys Chem A; 2013 Dec; 117(48):12889-96. PubMed ID: 24195494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.