These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 26472557)

  • 1. Nogo Receptor Signaling Restricts Adult Neural Plasticity by Limiting Synaptic AMPA Receptor Delivery.
    Jitsuki S; Nakajima W; Takemoto K; Sano A; Tada H; Takahashi-Jitsuki A; Takahashi T
    Cereb Cortex; 2016 Jan; 26(1):427-439. PubMed ID: 26472557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nogo receptor 1 limits tactile task performance independent of basal anatomical plasticity.
    Park JI; Frantz MG; Kast RJ; Chapman KS; Dorton HM; Stephany CÉ; Arnett MT; Herman DH; McGee AW
    PLoS One; 2014; 9(11):e112678. PubMed ID: 25386856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anatomical plasticity of adult brain is titrated by Nogo Receptor 1.
    Akbik FV; Bhagat SM; Patel PR; Cafferty WB; Strittmatter SM
    Neuron; 2013 Mar; 77(5):859-66. PubMed ID: 23473316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oligodendrocyte-myelin glycoprotein and Nogo negatively regulate activity-dependent synaptic plasticity.
    Raiker SJ; Lee H; Baldwin KT; Duan Y; Shrager P; Giger RJ
    J Neurosci; 2010 Sep; 30(37):12432-45. PubMed ID: 20844138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visualization of NMDA receptor-dependent AMPA receptor synaptic plasticity in vivo.
    Zhang Y; Cudmore RH; Lin DT; Linden DJ; Huganir RL
    Nat Neurosci; 2015 Mar; 18(3):402-7. PubMed ID: 25643295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural plasticity underlies experience-dependent functional plasticity of cortical circuits.
    Wilbrecht L; Holtmaat A; Wright N; Fox K; Svoboda K
    J Neurosci; 2010 Apr; 30(14):4927-32. PubMed ID: 20371813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AMPA receptor subunit GluR1 (GluA1) serine-845 site is involved in synaptic depression but not in spine shrinkage associated with chemical long-term depression.
    He K; Lee A; Song L; Kanold PO; Lee HK
    J Neurophysiol; 2011 Apr; 105(4):1897-907. PubMed ID: 21307330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nogo-A controls structural plasticity at dendritic spines by rapidly modulating actin dynamics.
    Kellner Y; Fricke S; Kramer S; Iobbi C; Wierenga CJ; Schwab ME; Korte M; Zagrebelsky M
    Hippocampus; 2016 Jun; 26(6):816-31. PubMed ID: 26748478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synaptic function for the Nogo-66 receptor NgR1: regulation of dendritic spine morphology and activity-dependent synaptic strength.
    Lee H; Raiker SJ; Venkatesh K; Geary R; Robak LA; Zhang Y; Yeh HH; Shrager P; Giger RJ
    J Neurosci; 2008 Mar; 28(11):2753-65. PubMed ID: 18337405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduced sensory-evoked structural plasticity in the aging barrel cortex.
    Voglewede RL; Vandemark KM; Davidson AM; DeWitt AR; Heffler MD; Trimmer EH; Mostany R
    Neurobiol Aging; 2019 Sep; 81():222-233. PubMed ID: 31323444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compartmentalized versus global synaptic plasticity on dendrites controlled by experience.
    Makino H; Malinow R
    Neuron; 2011 Dec; 72(6):1001-11. PubMed ID: 22196335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experience-dependent and cell-type-specific spine growth in the neocortex.
    Holtmaat A; Wilbrecht L; Knott GW; Welker E; Svoboda K
    Nature; 2006 Jun; 441(7096):979-83. PubMed ID: 16791195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Nogo Receptor Ligand LGI1 Regulates Synapse Number and Synaptic Activity in Hippocampal and Cortical Neurons.
    Thomas RA; Gibon J; Chen CXQ; Chierzi S; Soubannier VG; Baulac S; Séguéla P; Murai K; Barker PA
    eNeuro; 2018; 5(4):. PubMed ID: 30225353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural plasticity within the barrel cortex during initial phases of whisker-dependent learning.
    Kuhlman SJ; O'Connor DH; Fox K; Svoboda K
    J Neurosci; 2014 Apr; 34(17):6078-83. PubMed ID: 24760867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CREB Regulates Experience-Dependent Spine Formation and Enlargement in Mouse Barrel Cortex.
    Pignataro A; Borreca A; Ammassari-Teule M; Middei S
    Neural Plast; 2015; 2015():651469. PubMed ID: 26075101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Layer 4 pyramidal neurons exhibit robust dendritic spine plasticity in vivo after input deprivation.
    Miquelajauregui A; Kribakaran S; Mostany R; Badaloni A; Consalez GG; Portera-Cailliau C
    J Neurosci; 2015 May; 35(18):7287-94. PubMed ID: 25948276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of dendritic spines with GABAergic synapses induced by whisker stimulation in adult mice.
    Knott GW; Quairiaux C; Genoud C; Welker E
    Neuron; 2002 Apr; 34(2):265-73. PubMed ID: 11970868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experience-driven plasticity of visual cortex limited by myelin and Nogo receptor.
    McGee AW; Yang Y; Fischer QS; Daw NW; Strittmatter SM
    Science; 2005 Sep; 309(5744):2222-6. PubMed ID: 16195464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Posttranslational modifications and receptor-associated proteins in AMPA receptor trafficking and synaptic plasticity.
    Jiang J; Suppiramaniam V; Wooten MW
    Neurosignals; 2006-2007; 15(5):266-82. PubMed ID: 17622793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AMPA receptor modulation in previously frozen mouse brain sections: opposite effects of calcium in the cortex and hippocampus.
    Lapierre L; Valastro B; Miceli D; Massicotte G
    Hippocampus; 2000; 10(6):645-53. PubMed ID: 11153710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.