These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 26472610)

  • 1. Novel method for the generation of tissue-engineered vascular grafts based on a highly compacted fibrin matrix.
    Aper T; Wilhelmi M; Gebhardt C; Hoeffler K; Benecke N; Hilfiker A; Haverich A
    Acta Biomater; 2016 Jan; 29():21-32. PubMed ID: 26472610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development, comparative structural analysis, and first in vivo evaluation of acellular implanted highly compacted fibrin tubes for arterial bypass grafting.
    Regenberg MC; Wilhelmi M; Hilfiker A; Haverich A; Aper T
    J Mech Behav Biomed Mater; 2023 Dec; 148():106199. PubMed ID: 37922760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dehydration improves biomechanical strength of bioartificial vascular graft material and allows its long-term storage.
    Aper T; Wilhelmi M; Boer U; Lau S; Benecke N; Hilfiker A; Haverich A
    Innov Surg Sci; 2018 Sep; 3(3):215-224. PubMed ID: 31579785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transluminal compression increases mechanical stability, stiffness and endothelialization capacity of fibrin-based bioartificial blood vessels.
    Helms F; Haverich A; Böer U; Wilhelmi M
    J Mech Behav Biomed Mater; 2021 Dec; 124():104835. PubMed ID: 34530301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of implantable autologous small-calibre vascular grafts from peripheral blood samples.
    Aper T; Teebken OE; Krüger A; Heisterkamp A; Hilfiker A; Haverich A
    Zentralbl Chir; 2013 Apr; 138(2):173-9. PubMed ID: 23341132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of PU/Fibrin Vascular Scaffold with Good Biomechanical Properties and Evaluation of Its Performance in vitro and in vivo.
    Yang L; Li X; Wu Y; Du P; Sun L; Yu Z; Song S; Yin J; Ma X; Jing C; Zhao J; Chen H; Dong Y; Zhang Q; Zhao L
    Int J Nanomedicine; 2020; 15():8697-8715. PubMed ID: 33192062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication and biomechanical characterization of a spider silk reinforced fibrin-based vascular prosthesis.
    Glomb C; Wilhelmi M; Strauß S; Zippusch S; Klingenberg M; Aper T; Vogt PM; Ruhparwar A; Helms F
    J Mech Behav Biomed Mater; 2024 Apr; 152():106433. PubMed ID: 38316085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tissue-engineered small-caliber vascular graft based on a novel biodegradable composite fibrin-polylactide scaffold.
    Tschoeke B; Flanagan TC; Koch S; Harwoko MS; Deichmann T; Ellå V; Sachweh JS; Kellomåki M; Gries T; Schmitz-Rode T; Jockenhoevel S
    Tissue Eng Part A; 2009 Aug; 15(8):1909-18. PubMed ID: 19125650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tissue-engineered blood vessel graft produced by self-derived cells and allogenic acellular matrix: a functional performance and histologic study.
    Yang D; Guo T; Nie C; Morris SF
    Ann Plast Surg; 2009 Mar; 62(3):297-303. PubMed ID: 19240529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic straining combined with fibrin gel cell seeding improves strength of tissue-engineered small-diameter vascular grafts.
    Stekelenburg M; Rutten MC; Snoeckx LH; Baaijens FP
    Tissue Eng Part A; 2009 May; 15(5):1081-9. PubMed ID: 18831688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fibrin-polylactide-based tissue-engineered vascular graft in the arterial circulation.
    Koch S; Flanagan TC; Sachweh JS; Tanios F; Schnoering H; Deichmann T; Ellä V; Kellomäki M; Gronloh N; Gries T; Tolba R; Schmitz-Rode T; Jockenhoevel S
    Biomaterials; 2010 Jun; 31(17):4731-9. PubMed ID: 20304484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of tissue-engineered small-diameter vascular grafts in fibrin scaffolds in 30 days.
    Gui L; Boyle MJ; Kamin YM; Huang AH; Starcher BC; Miller CA; Vishnevetsky MJ; Niklason LE
    Tissue Eng Part A; 2014 May; 20(9-10):1499-507. PubMed ID: 24320793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of remodeling process in small-diameter cell-free tissue-engineered arterial graft.
    Tara S; Kurobe H; Maxfield MW; Rocco KA; Yi T; Naito Y; Breuer CK; Shinoka T
    J Vasc Surg; 2015 Sep; 62(3):734-43. PubMed ID: 24745941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implantable arterial grafts from human fibroblasts and fibrin using a multi-graft pulsed flow-stretch bioreactor with noninvasive strength monitoring.
    Syedain ZH; Meier LA; Bjork JW; Lee A; Tranquillo RT
    Biomaterials; 2011 Jan; 32(3):714-22. PubMed ID: 20934214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid Self-Assembly of Bioengineered Cardiovascular Bypass Grafts From Scaffold-Stabilized, Tubular Bilevel Cell Sheets.
    von Bornstädt D; Wang H; Paulsen MJ; Goldstone AB; Eskandari A; Thakore A; Stapleton L; Steele AN; Truong VN; Jaatinen K; Hironaka C; Woo YJ
    Circulation; 2018 Nov; 138(19):2130-2144. PubMed ID: 30474423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blood outgrowth endothelial cells alter remodeling of completely biological engineered grafts implanted into the sheep femoral artery.
    Meier LA; Syedain ZH; Lahti MT; Johnson SS; Chen MH; Hebbel RP; Tranquillo RT
    J Cardiovasc Transl Res; 2014 Mar; 7(2):242-9. PubMed ID: 24429838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Creation of viable pulmonary artery autografts through tissue engineering.
    Shinoka T; Shum-Tim D; Ma PX; Tanel RE; Isogai N; Langer R; Vacanti JP; Mayer JE
    J Thorac Cardiovasc Surg; 1998 Mar; 115(3):536-45; discussion 545-6. PubMed ID: 9535439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a composite degradable/nondegradable tissue-engineered vascular graft.
    Tschoeke B; Flanagan TC; Cornelissen A; Koch S; Roehl A; Sriharwoko M; Sachweh JS; Gries T; Schmitz-Rode T; Jockenhoevel S
    Artif Organs; 2008 Oct; 32(10):800-9. PubMed ID: 18684200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo application of tissue-engineered blood vessels of bacterial cellulose as small arterial substitutes: proof of concept?
    Scherner M; Reutter S; Klemm D; Sterner-Kock A; Guschlbauer M; Richter T; Langebartels G; Madershahian N; Wahlers T; Wippermann J
    J Surg Res; 2014 Jun; 189(2):340-7. PubMed ID: 24726059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tissue engineering human small-caliber autologous vessels using a xenogenous decellularized connective tissue matrix approach: preclinical comparative biomechanical studies.
    Heine J; Schmiedl A; Cebotari S; Karck M; Mertsching H; Haverich A; Kallenbach K
    Artif Organs; 2011 Oct; 35(10):930-40. PubMed ID: 21732955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.