These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 26473582)

  • 1. Molecular modelling of the pH influence in the geometry and the absorbance spectrum of near-infrared TagRFP675 fluorescent protein.
    Randino C; Gelabert R; Moreno M; Lluch JM; Piatkevich KD
    Phys Chem Chem Phys; 2015 Nov; 17(43):29363-73. PubMed ID: 26473582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. QM/MM study of the monomeric red fluorescent protein DsRed.M1.
    Sanchez-Garcia E; Doerr M; Hsiao YW; Thiel W
    J Phys Chem B; 2009 Dec; 113(52):16622-31. PubMed ID: 19994834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. QM/MM studies of structural and energetic properties of the far-red fluorescent protein HcRed.
    Sun Q; Doerr M; Li Z; Smith SC; Thiel W
    Phys Chem Chem Phys; 2010 Mar; 12(10):2450-8. PubMed ID: 20449359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum refinement of protein structures: implementation and application to the red fluorescent protein DsRed.M1.
    Hsiao YW; Sanchez-Garcia E; Doerr M; Thiel W
    J Phys Chem B; 2010 Nov; 114(46):15413-23. PubMed ID: 20977248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence from Multiple Chromophore Hydrogen-Bonding States in the Far-Red Protein TagRFP675.
    Konold PE; Yoon E; Lee J; Allen SL; Chapagain PP; Gerstman BS; Regmi CK; Piatkevich KD; Verkhusha VV; Joo T; Jimenez R
    J Phys Chem Lett; 2016 Aug; 7(15):3046-51. PubMed ID: 27447848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The 559-to-600 nm shift observed in red fluorescent protein eqFP611 is attributed to cis-trans isomerization of the chromophore in an anionic protein pocket.
    Yan W; Xie D; Zeng J
    Phys Chem Chem Phys; 2009 Aug; 11(29):6042-50. PubMed ID: 19606312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extended Stokes shift in fluorescent proteins: chromophore-protein interactions in a near-infrared TagRFP675 variant.
    Piatkevich KD; Malashkevich VN; Morozova KS; Nemkovich NA; Almo SC; Verkhusha VV
    Sci Rep; 2013; 3():1847. PubMed ID: 23677204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular modeling of green fluorescent protein: structural effects of chromophore deprotonation.
    Patnaik SS; Trohalaki S; Pachter R
    Biopolymers; 2004 Dec; 75(6):441-52. PubMed ID: 15497152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. QM/MM study of the absorption spectra of DsRed.M1 chromophores.
    Sanchez-Garcia E; Doerr M; Thiel W
    J Comput Chem; 2010 Jun; 31(8):1603-12. PubMed ID: 20014299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic excitations of green fluorescent proteins: modeling solvatochromatic shifts of red fluorescent protein chromophore model compound in aqueous solutions.
    Yan W; Zhang L; Xie D; Zeng J
    J Phys Chem B; 2007 Dec; 111(50):14055-63. PubMed ID: 18044868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum chemistry behind bioimaging: insights from ab initio studies of fluorescent proteins and their chromophores.
    Bravaya KB; Grigorenko BL; Nemukhin AV; Krylov AI
    Acc Chem Res; 2012 Feb; 45(2):265-75. PubMed ID: 21882809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyan fluorescent protein: molecular dynamics, simulations, and electronic absorption spectrum.
    Demachy I; Ridard J; Laguitton-Pasquier H; Durnerin E; Vallverdu G; Archirel P; Lévy B
    J Phys Chem B; 2005 Dec; 109(50):24121-33. PubMed ID: 16375404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen Bond Fluctuations Control Photochromism in a Reversibly Photo-Switchable Fluorescent Protein.
    Morozov D; Groenhof G
    Angew Chem Int Ed Engl; 2016 Jan; 55(2):576-8. PubMed ID: 26612709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural Determinants of Improved Fluorescence in a Family of Bacteriophytochrome-Based Infrared Fluorescent Proteins: Insights from Continuum Electrostatic Calculations and Molecular Dynamics Simulations.
    Feliks M; Lafaye C; Shu X; Royant A; Field M
    Biochemistry; 2016 Aug; 55(31):4263-74. PubMed ID: 27471775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-Photon Absorption Properties of Gold Fluorescent Protein: A Combined Molecular Dynamics and Quantum Chemistry Study.
    Şimşek Y; Brown A
    J Phys Chem B; 2018 Jun; 122(22):5738-5748. PubMed ID: 29741903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystallographic structures of Discosoma red fluorescent protein with immature and mature chromophores: linking peptide bond trans-cis isomerization and acylimine formation in chromophore maturation.
    Tubbs JL; Tainer JA; Getzoff ED
    Biochemistry; 2005 Jul; 44(29):9833-40. PubMed ID: 16026155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Far Red Fluorescent Proteins: Where Is the Limit of the Acylimine Chromophore?
    Moron V; Marazzi M; Wanko M
    J Chem Theory Comput; 2019 Jul; 15(7):4228-4240. PubMed ID: 31146524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling photoabsorption of the asFP595 chromophore.
    Bravaya KB; Bochenkova AV; Granovsky AA; Savitsky AP; Nemukhin AV
    J Phys Chem A; 2008 Sep; 112(37):8804-10. PubMed ID: 18729441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematic Excited State Studies of Reversibly Switchable Fluorescent Proteins.
    Smyrnova D; Marín MDC; Olivucci M; Ceulemans A
    J Chem Theory Comput; 2018 Jun; 14(6):3163-3172. PubMed ID: 29772175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiscale Simulations on Spectral Tuning and the Photoisomerization Mechanism in Fluorescent RNA Spinach.
    Li X; Chung LW; Li G
    J Chem Theory Comput; 2016 Nov; 12(11):5453-5464. PubMed ID: 27685000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.