These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 26473590)
1. Noncontact photoacoustic tomography of in vivo chicken chorioallantoic membrane based on all-fiber heterodyne interferometry. Eom J; Park SJ; Lee BH J Biomed Opt; 2015 Oct; 20(10):106007. PubMed ID: 26473590 [TBL] [Abstract][Full Text] [Related]
2. Noncontact photoacoustic imaging based on all-fiber heterodyne interferometer. Park SJ; Eom J; Kim YH; Lee CS; Lee BH Opt Lett; 2014 Aug; 39(16):4903-6. PubMed ID: 25121904 [TBL] [Abstract][Full Text] [Related]
4. Handheld photoacoustic tomography probe built using optical-fiber parallel acoustic delay lines. Cho Y; Chang CC; Yu J; Jeon M; Kim C; Wang LV; Zou J J Biomed Opt; 2014 Aug; 19(8):086007. PubMed ID: 25104413 [TBL] [Abstract][Full Text] [Related]
5. Rapid and noncontact photoacoustic tomography imaging system using an interferometer with high-speed phase modulation technique. Liu J; Tang Z; Wu Y; Wang Y Rev Sci Instrum; 2015 Apr; 86(4):044904. PubMed ID: 25933886 [TBL] [Abstract][Full Text] [Related]
6. Polydimethylsiloxane thin film characterization using all-optical photoacoustic mechanism. Zou X; Wu N; Tian Y; Zhang Y; Wang X Appl Opt; 2013 Sep; 52(25):6239-44. PubMed ID: 24085082 [TBL] [Abstract][Full Text] [Related]
7. Digital holographic tomography based on spectral interferometry. Yu L; Chen Z Opt Lett; 2007 Oct; 32(20):3005-7. PubMed ID: 17938681 [TBL] [Abstract][Full Text] [Related]
8. Integrated optical- and acoustic-resolution photoacoustic microscopy based on an optical fiber bundle. Xing W; Wang L; Maslov K; Wang LV Opt Lett; 2013 Jan; 38(1):52-54. PubMed ID: 23282835 [TBL] [Abstract][Full Text] [Related]
9. All-optical photoacoustic imaging system using fiber ultrasound probe and hollow optical fiber bundle. Miida Y; Matsuura Y Opt Express; 2013 Sep; 21(19):22023-33. PubMed ID: 24104094 [TBL] [Abstract][Full Text] [Related]
10. Three-dimensional photoacoustic imaging using fiber-based line detectors. Grün H; Berer T; Burgholzer P; Nuster R; Paltauf G J Biomed Opt; 2010; 15(2):021306. PubMed ID: 20459228 [TBL] [Abstract][Full Text] [Related]
11. Design and processing of high-density single-mode fiber arrays for imaging and parallel interferometer applications. Scepanovic M; Castillo JE; Barton JK; Mathine D; Kostuk RK; Sato A Appl Opt; 2004 Jul; 43(21):4150-6. PubMed ID: 15291057 [TBL] [Abstract][Full Text] [Related]
12. Real-time photoacoustic imaging system for burn diagnosis. Ida T; Kawaguchi Y; Kawauchi S; Iwaya K; Tsuda H; Saitoh D; Sato S; Iwai T J Biomed Opt; 2014 Aug; 19(8):086013. PubMed ID: 25127338 [TBL] [Abstract][Full Text] [Related]
13. Comparison of noncontact and fiber-based fluorescence-mediated tomography. Schulz RB; Peter J; Semmler W; D'Andrea C; Valentini G; Cubeddu R Opt Lett; 2006 Mar; 31(6):769-71. PubMed ID: 16544618 [TBL] [Abstract][Full Text] [Related]
14. High energy supercontinuum sources using tapered photonic crystal fibers for multispectral photoacoustic microscopy. Bondu M; Brooks C; Jakobsen C; Oakes K; Moselund PM; Leick L; Bang O; Podoleanu A J Biomed Opt; 2016 Jun; 21(6):61005. PubMed ID: 26836298 [TBL] [Abstract][Full Text] [Related]
16. D-type fiber biosensor based on surface-plasmon resonance technology and heterodyne interferometry. Chiu MH; Wang SF; Chang RS Opt Lett; 2005 Feb; 30(3):233-5. PubMed ID: 15751869 [TBL] [Abstract][Full Text] [Related]
17. Bessel-beam Grueneisen relaxation photoacoustic microscopy with extended depth of field. Shi J; Wang L; Noordam C; Wang LV J Biomed Opt; 2015 Nov; 20(11):116002. PubMed ID: 26524679 [TBL] [Abstract][Full Text] [Related]
18. Design and validation of an angle-resolved low-coherence interferometry fiber probe for in vivo clinical measurements of depth-resolved nuclear morphology. Zhu Y; Terry NG; Woosley JT; Shaheen NJ; Wax A J Biomed Opt; 2011; 16(1):011003. PubMed ID: 21280890 [TBL] [Abstract][Full Text] [Related]