BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 26473758)

  • 1. Structural investigations of the p53/p73 homologs from the tunicate species Ciona intestinalis reveal the sequence requirements for the formation of a tetramerization domain.
    Heering J; Jonker HR; Löhr F; Schwalbe H; Dötsch V
    Protein Sci; 2016 Feb; 25(2):410-22. PubMed ID: 26473758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational stability and activity of p73 require a second helix in the tetramerization domain.
    Coutandin D; Löhr F; Niesen FH; Ikeya T; Weber TA; Schäfer B; Zielonka EM; Bullock AN; Yang A; Güntert P; Knapp S; McKeon F; Ou HD; Dötsch V
    Cell Death Differ; 2009 Dec; 16(12):1582-9. PubMed ID: 19763140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural evolution of p53, p63, and p73: implication for heterotetramer formation.
    Joerger AC; Rajagopalan S; Natan E; Veprintsev DB; Robinson CV; Fersht AR
    Proc Natl Acad Sci U S A; 2009 Oct; 106(42):17705-10. PubMed ID: 19815500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dimerization of the core domain of the p53 family: a computational study.
    Madhumalar A; Jun LH; Lane DP; Verma CS
    Cell Cycle; 2009 Jan; 8(1):137-48. PubMed ID: 19106606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular basis of S100 proteins interacting with the p53 homologs p63 and p73.
    van Dieck J; Brandt T; Teufel DP; Veprintsev DB; Joerger AC; Fersht AR
    Oncogene; 2010 Apr; 29(14):2024-35. PubMed ID: 20140014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox state of p63 and p73 core domains regulates sequence-specific DNA binding.
    Tichý V; Navrátilová L; Adámik M; Fojta M; Brázdová M
    Biochem Biophys Res Commun; 2013 Apr; 433(4):445-9. PubMed ID: 23501101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The p73 DNA binding domain displays enhanced stability relative to its homologue, the tumor suppressor p53, and exhibits cooperative DNA binding.
    Patel S; Bui TT; Drake AF; Fraternali F; Nikolova PV
    Biochemistry; 2008 Mar; 47(10):3235-44. PubMed ID: 18260640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in the transactivation domains of p53 family members: a computational study.
    Mavinahalli JN; Madhumalar A; Beuerman RW; Lane DP; Verma C
    BMC Genomics; 2010 Feb; 11 Suppl 1(Suppl 1):S5. PubMed ID: 20158876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of DeltaN isoform and polyadenylation site choice variants in molluscan p63/p73-like homologues.
    Muttray AF; Cox RL; Reinisch CL; Baldwin SA
    Mar Biotechnol (NY); 2007; 9(2):217-30. PubMed ID: 17242983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structures of the DNA-binding domain tetramer of the p53 tumor suppressor family member p73 bound to different full-site response elements.
    Ethayathulla AS; Nguyen HT; Viadiu H
    J Biol Chem; 2013 Feb; 288(7):4744-54. PubMed ID: 23243311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of the Activity in the p53 Family Depends on the Organization of the Transactivation Domain.
    Krauskopf K; Gebel J; Kazemi S; Tuppi M; Löhr F; Schäfer B; Koch J; Güntert P; Dötsch V; Kehrloesser S
    Structure; 2018 Aug; 26(8):1091-1100.e4. PubMed ID: 30099987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solution structure of a conserved C-terminal domain of p73 with structural homology to the SAM domain.
    Chi SW; Ayed A; Arrowsmith CH
    EMBO J; 1999 Aug; 18(16):4438-45. PubMed ID: 10449409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of the C-terminal sterile alpha-motif (SAM) domain of human p73 alpha.
    Wang WK; Bycroft M; Foster NW; Buckle AM; Fersht AR; Chen YW
    Acta Crystallogr D Biol Crystallogr; 2001 Apr; 57(Pt 4):545-51. PubMed ID: 11264583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and function in the p53 family.
    Arrowsmith CH
    Cell Death Differ; 1999 Dec; 6(12):1169-73. PubMed ID: 10637432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of cadmium, cobalt and nickel on sequence-specific DNA binding of p63 and p73 in vitro and in cells.
    Adámik M; Bažantová P; Navrátilová L; Polášková A; Pečinka P; Holaňová L; Tichý V; Brázdová M
    Biochem Biophys Res Commun; 2015 Jan; 456(1):29-34. PubMed ID: 25446071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tracing the evolution of the p53 tetramerization domain.
    Joerger AC; Wilcken R; Andreeva A
    Structure; 2014 Sep; 22(9):1301-1310. PubMed ID: 25185827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and kinetic stability of the p63 tetramerization domain.
    Natan E; Joerger AC
    J Mol Biol; 2012 Jan; 415(3):503-13. PubMed ID: 22100306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of p73 DNA-binding domain tetramer modulates p73 transactivation.
    Ethayathulla AS; Tse PW; Monti P; Nguyen S; Inga A; Fronza G; Viadiu H
    Proc Natl Acad Sci U S A; 2012 Apr; 109(16):6066-71. PubMed ID: 22474346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis for ASPP2 recognition by the tumor suppressor p73.
    Canning P; von Delft F; Bullock AN
    J Mol Biol; 2012 Nov; 423(4):515-27. PubMed ID: 22917970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. p53 Family members p63 and p73 are SAM domain-containing proteins.
    Thanos CD; Bowie JU
    Protein Sci; 1999 Aug; 8(8):1708-10. PubMed ID: 10452616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.