These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 26474479)
1. Histamine Transmission Modulates the Phenotype of Murine Narcolepsy Caused by Orexin Neuron Deficiency. Bastianini S; Silvani A; Berteotti C; Lo Martire V; Cohen G; Ohtsu H; Lin JS; Zoccoli G PLoS One; 2015; 10(10):e0140520. PubMed ID: 26474479 [TBL] [Abstract][Full Text] [Related]
2. High-amplitude theta wave bursts characterizing narcoleptic mice and patients are also produced by histamine deficiency in mice. Bastianini S; Lo Martire V; Berteotti C; Silvani A; Ohtsu H; Lin JS; Zoccoli G J Sleep Res; 2016 Oct; 25(5):591-595. PubMed ID: 27230703 [TBL] [Abstract][Full Text] [Related]
3. Histamine in murine narcolepsy: What do genetic and immune models tell us? Melzi S; Morel AL; Scoté-Blachon C; Liblau R; Dauvilliers Y; Peyron C Brain Pathol; 2022 Mar; 32(2):e13027. PubMed ID: 34672414 [TBL] [Abstract][Full Text] [Related]
4. Increase of histaminergic tuberomammillary neurons in narcolepsy. Valko PO; Gavrilov YV; Yamamoto M; Reddy H; Haybaeck J; Mignot E; Baumann CR; Scammell TE Ann Neurol; 2013 Dec; 74(6):794-804. PubMed ID: 24006291 [TBL] [Abstract][Full Text] [Related]
5. Greatly increased numbers of histamine cells in human narcolepsy with cataplexy. John J; Thannickal TC; McGregor R; Ramanathan L; Ohtsu H; Nishino S; Sakai N; Yamanaka A; Stone C; Cornford M; Siegel JM Ann Neurol; 2013 Dec; 74(6):786-93. PubMed ID: 23821583 [TBL] [Abstract][Full Text] [Related]
6. Melanin-concentrating hormone neurons contribute to dysregulation of rapid eye movement sleep in narcolepsy. Naganuma F; Bandaru SS; Absi G; Mahoney CE; Scammell TE; Vetrivelan R Neurobiol Dis; 2018 Dec; 120():12-20. PubMed ID: 30149182 [TBL] [Abstract][Full Text] [Related]
7. Sleep and cardiovascular phenotype in middle-aged hypocretin-deficient narcoleptic mice. Silvani A; Bastianini S; Berteotti C; Cenacchi G; Leone O; Lo Martire V; Papa V; Zoccoli G J Sleep Res; 2014 Feb; 23(1):98-106. PubMed ID: 24033681 [TBL] [Abstract][Full Text] [Related]
8. Deficiency of orexin signaling during sleep is involved in abnormal REM sleep architecture in narcolepsy. Ito H; Fukatsu N; Rahaman SM; Mukai Y; Izawa S; Ono D; Kilduff TS; Yamanaka A Proc Natl Acad Sci U S A; 2023 Oct; 120(41):e2301951120. PubMed ID: 37796986 [TBL] [Abstract][Full Text] [Related]
9. Dual orexin and MCH neuron-ablated mice display severe sleep attacks and cataplexy. Hung CJ; Ono D; Kilduff TS; Yamanaka A Elife; 2020 Apr; 9():. PubMed ID: 32314734 [TBL] [Abstract][Full Text] [Related]
10. Effects of orexin gene transfer in the dorsolateral pons in orexin knockout mice. Blanco-Centurion C; Liu M; Konadhode R; Pelluru D; Shiromani PJ Sleep; 2013 Jan; 36(1):31-40. PubMed ID: 23288969 [TBL] [Abstract][Full Text] [Related]
11. Distinct narcolepsy syndromes in Orexin receptor-2 and Orexin null mice: molecular genetic dissection of Non-REM and REM sleep regulatory processes. Willie JT; Chemelli RM; Sinton CM; Tokita S; Williams SC; Kisanuki YY; Marcus JN; Lee C; Elmquist JK; Kohlmeier KA; Leonard CS; Richardson JA; Hammer RE; Yanagisawa M Neuron; 2003 Jun; 38(5):715-30. PubMed ID: 12797957 [TBL] [Abstract][Full Text] [Related]
12. Transgenic Archaerhodopsin-3 Expression in Hypocretin/Orexin Neurons Engenders Cellular Dysfunction and Features of Type 2 Narcolepsy. Williams RH; Tsunematsu T; Thomas AM; Bogyo K; Yamanaka A; Kilduff TS J Neurosci; 2019 Nov; 39(47):9435-9452. PubMed ID: 31628177 [TBL] [Abstract][Full Text] [Related]
13. Orexin/hypocretin and histamine: distinct roles in the control of wakefulness demonstrated using knock-out mouse models. Anaclet C; Parmentier R; Ouk K; Guidon G; Buda C; Sastre JP; Akaoka H; Sergeeva OA; Yanagisawa M; Ohtsu H; Franco P; Haas HL; Lin JS J Neurosci; 2009 Nov; 29(46):14423-38. PubMed ID: 19923277 [TBL] [Abstract][Full Text] [Related]
14. Running promotes wakefulness and increases cataplexy in orexin knockout mice. España RA; McCormack SL; Mochizuki T; Scammell TE Sleep; 2007 Nov; 30(11):1417-25. PubMed ID: 18041476 [TBL] [Abstract][Full Text] [Related]
16. Behavioral state instability in orexin knock-out mice. Mochizuki T; Crocker A; McCormack S; Yanagisawa M; Sakurai T; Scammell TE J Neurosci; 2004 Jul; 24(28):6291-300. PubMed ID: 15254084 [TBL] [Abstract][Full Text] [Related]
17. Conditional ablation of orexin/hypocretin neurons: a new mouse model for the study of narcolepsy and orexin system function. Tabuchi S; Tsunematsu T; Black SW; Tominaga M; Maruyama M; Takagi K; Minokoshi Y; Sakurai T; Kilduff TS; Yamanaka A J Neurosci; 2014 May; 34(19):6495-509. PubMed ID: 24806676 [TBL] [Abstract][Full Text] [Related]
18. Continuous intrathecal orexin delivery inhibits cataplexy in a murine model of narcolepsy. Kaushik MK; Aritake K; Imanishi A; Kanbayashi T; Ichikawa T; Shimizu T; Urade Y; Yanagisawa M Proc Natl Acad Sci U S A; 2018 Jun; 115(23):6046-6051. PubMed ID: 29784823 [TBL] [Abstract][Full Text] [Related]
19. Anatomical, physiological, and pharmacological characteristics of histidine decarboxylase knock-out mice: evidence for the role of brain histamine in behavioral and sleep-wake control. Parmentier R; Ohtsu H; Djebbara-Hannas Z; Valatx JL; Watanabe T; Lin JS J Neurosci; 2002 Sep; 22(17):7695-711. PubMed ID: 12196593 [TBL] [Abstract][Full Text] [Related]
20. Orexin peptides prevent cataplexy and improve wakefulness in an orexin neuron-ablated model of narcolepsy in mice. Mieda M; Willie JT; Hara J; Sinton CM; Sakurai T; Yanagisawa M Proc Natl Acad Sci U S A; 2004 Mar; 101(13):4649-54. PubMed ID: 15070772 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]