These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 26474844)
1. Conformational plasticity is crucial for C3-RhoA complex formation by ARTT-loop. Tsuge H; Yoshida T; Tsurumura T Pathog Dis; 2015 Dec; 73(9):ftv094. PubMed ID: 26474844 [TBL] [Abstract][Full Text] [Related]
2. Crystal structure and novel recognition motif of rho ADP-ribosylating C3 exoenzyme from Clostridium botulinum: structural insights for recognition specificity and catalysis. Han S; Arvai AS; Clancy SB; Tainer JA J Mol Biol; 2001 Jan; 305(1):95-107. PubMed ID: 11114250 [TBL] [Abstract][Full Text] [Related]
3. Molecular recognition of an ADP-ribosylating Clostridium botulinum C3 exoenzyme by RalA GTPase. Holbourn KP; Sutton JM; Evans HR; Shone CC; Acharya KR Proc Natl Acad Sci U S A; 2005 Apr; 102(15):5357-62. PubMed ID: 15809419 [TBL] [Abstract][Full Text] [Related]
4. Exchange of glutamine-217 to glutamate of Clostridium limosum exoenzyme C3 turns the asparagine-specific ADP-ribosyltransferase into an arginine-modifying enzyme. Vogelsgesang M; Aktories K Biochemistry; 2006 Jan; 45(3):1017-25. PubMed ID: 16411778 [TBL] [Abstract][Full Text] [Related]
5. Structural basis for the NAD-hydrolysis mechanism and the ARTT-loop plasticity of C3 exoenzymes. Ménétrey J; Flatau G; Boquet P; Ménez A; Stura EA Protein Sci; 2008 May; 17(5):878-86. PubMed ID: 18369192 [TBL] [Abstract][Full Text] [Related]
6. Rho GTPase Recognition by C3 Exoenzyme Based on C3-RhoA Complex Structure. Toda A; Tsurumura T; Yoshida T; Tsumori Y; Tsuge H J Biol Chem; 2015 Aug; 290(32):19423-32. PubMed ID: 26067270 [TBL] [Abstract][Full Text] [Related]
7. NAD binding induces conformational changes in Rho ADP-ribosylating clostridium botulinum C3 exoenzyme. Ménétrey J; Flatau G; Stura EA; Charbonnier JB; Gas F; Teulon JM; Le Du MH; Boquet P; Menez A J Biol Chem; 2002 Aug; 277(34):30950-7. PubMed ID: 12029083 [TBL] [Abstract][Full Text] [Related]
8. Crystal structure of the C3bot-RalA complex reveals a novel type of action of a bacterial exoenzyme. Pautsch A; Vogelsgesang M; Tränkle J; Herrmann C; Aktories K EMBO J; 2005 Oct; 24(20):3670-80. PubMed ID: 16177825 [TBL] [Abstract][Full Text] [Related]
9. C3 exoenzymes, novel insights into structure and action of Rho-ADP-ribosylating toxins. Vogelsgesang M; Pautsch A; Aktories K Naunyn Schmiedebergs Arch Pharmacol; 2007 Feb; 374(5-6):347-60. PubMed ID: 17146673 [TBL] [Abstract][Full Text] [Related]
10. The ARTT motif and a unified structural understanding of substrate recognition in ADP-ribosylating bacterial toxins and eukaryotic ADP-ribosyltransferases. Han S; Tainer JA Int J Med Microbiol; 2002 Feb; 291(6-7):523-9. PubMed ID: 11890553 [TBL] [Abstract][Full Text] [Related]
11. Crystal structure of the Clostridium limosum C3 exoenzyme. Vogelsgesang M; Stieglitz B; Herrmann C; Pautsch A; Aktories K FEBS Lett; 2008 Apr; 582(7):1032-6. PubMed ID: 18325337 [TBL] [Abstract][Full Text] [Related]
12. Rho-specific Bacillus cereus ADP-ribosyltransferase C3cer cloning and characterization. Wilde C; Vogelsgesang M; Aktories K Biochemistry; 2003 Aug; 42(32):9694-702. PubMed ID: 12911311 [TBL] [Abstract][Full Text] [Related]
13. Structure-function analysis of the Rho-ADP-ribosylating exoenzyme C3stau2 from Staphylococcus aureus. Wilde C; Just I; Aktories K Biochemistry; 2002 Feb; 41(5):1539-44. PubMed ID: 11814347 [TBL] [Abstract][Full Text] [Related]
14. Recognition of RhoA by Clostridium botulinum C3 exoenzyme. Wilde C; Genth H; Aktories K; Just I J Biol Chem; 2000 Jun; 275(22):16478-83. PubMed ID: 10748216 [TBL] [Abstract][Full Text] [Related]
15. The crystal structure of C3stau2 from Staphylococcus aureus and its complex with NAD. Evans HR; Sutton JM; Holloway DE; Ayriss J; Shone CC; Acharya KR J Biol Chem; 2003 Nov; 278(46):45924-30. PubMed ID: 12933793 [TBL] [Abstract][Full Text] [Related]
16. Substrate N Yoshida T; Tsuge H J Biol Chem; 2018 Sep; 293(36):13768-13774. PubMed ID: 30072382 [TBL] [Abstract][Full Text] [Related]
17. C3 exoenzyme from Clostridium botulinum: structure of a tetragonal crystal form and a reassessment of NAD-induced flexure. Evans HR; Holloway DE; Sutton JM; Ayriss J; Shone CC; Acharya KR Acta Crystallogr D Biol Crystallogr; 2004 Aug; 60(Pt 8):1502-5. PubMed ID: 15272191 [TBL] [Abstract][Full Text] [Related]
18. Enhancement of Clostridium botulinum C3-catalysed ADP-ribosylation of recombinant rhoA by sodium dodecyl sulfate. Just I; Mohr C; Habermann B; Koch G; Aktories K Biochem Pharmacol; 1993 Apr; 45(7):1409-16. PubMed ID: 8385945 [TBL] [Abstract][Full Text] [Related]
19. Detection and Quantification of ADP-Ribosylated RhoA/B by Monoclonal Antibody. Rohrbeck A; Fühner V; Schröder A; Hagemann S; Vu XK; Berndt S; Hust M; Pich A; Just I Toxins (Basel); 2016 Apr; 8(4):100. PubMed ID: 27043630 [TBL] [Abstract][Full Text] [Related]
20. ADP-ribosylation by Clostridium botulinum C3 exoenzyme increases steady-state GTPase activities of recombinant rhoA and rhoB proteins. Mohr C; Koch G; Just I; Aktories K FEBS Lett; 1992 Feb; 297(1-2):95-9. PubMed ID: 1551445 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]