These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 26475197)

  • 1. Overexpression of Arabidopsis VIT1 increases accumulation of iron in cassava roots and stems.
    Narayanan N; Beyene G; Chauhan RD; Gaitán-Solis E; Grusak MA; Taylor N; Anderson P
    Plant Sci; 2015 Nov; 240():170-81. PubMed ID: 26475197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biofortification of field-grown cassava by engineering expression of an iron transporter and ferritin.
    Narayanan N; Beyene G; Chauhan RD; Gaitán-Solís E; Gehan J; Butts P; Siritunga D; Okwuonu I; Woll A; Jiménez-Aguilar DM; Boy E; Grusak MA; Anderson P; Taylor NJ
    Nat Biotechnol; 2019 Feb; 37(2):144-151. PubMed ID: 30692693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vacuolar-Iron-Transporter1-Like proteins mediate iron homeostasis in Arabidopsis.
    Gollhofer J; Timofeev R; Lan P; Schmidt W; Buckhout TJ
    PLoS One; 2014; 9(10):e110468. PubMed ID: 25360591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Members of a small family of nodulin-like genes are regulated under iron deficiency in roots of Arabidopsis thaliana.
    Gollhofer J; Schläwicke C; Jungnick N; Schmidt W; Buckhout TJ
    Plant Physiol Biochem; 2011 May; 49(5):557-64. PubMed ID: 21411332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering cyanogen synthesis and turnover in cassava (Manihot esculenta).
    Siritunga D; Sayre R
    Plant Mol Biol; 2004 Nov; 56(4):661-9. PubMed ID: 15630626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency.
    Thomine S; Lelièvre F; Debarbieux E; Schroeder JI; Barbier-Brygoo H
    Plant J; 2003 Jun; 34(5):685-95. PubMed ID: 12787249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic modification of cassava for enhanced starch production.
    Ihemere U; Arias-Garzon D; Lawrence S; Sayre R
    Plant Biotechnol J; 2006 Jul; 4(4):453-65. PubMed ID: 17177810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transgenic biofortification of the starchy staple cassava (Manihot esculenta) generates a novel sink for protein.
    Abhary M; Siritunga D; Stevens G; Taylor NJ; Fauquet CM
    PLoS One; 2011 Jan; 6(1):e16256. PubMed ID: 21283593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of the cassava nitrate transporter
    Zou L; Qi D; Sun J; Zheng X; Peng M
    J Genet; 2019 Sep; 98():. PubMed ID: 31544785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Root-selective expression of AtCAX4 and AtCAX2 results in reduced lamina cadmium in field-grown Nicotiana tabacum L.
    Korenkov V; King B; Hirschi K; Wagner GJ
    Plant Biotechnol J; 2009 Apr; 7(3):219-26. PubMed ID: 19175521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iron Biofortification and Homeostasis in Transgenic Cassava Roots Expressing the Algal Iron Assimilatory Gene, FEA1.
    Ihemere UE; Narayanan NN; Sayre RT
    Front Plant Sci; 2012; 3():171. PubMed ID: 22993514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic profiles of six African cultivars of cassava (Manihot esculenta Crantz) highlight bottlenecks of root yield.
    Obata T; Klemens PAW; Rosado-Souza L; Schlereth A; Gisel A; Stavolone L; Zierer W; Morales N; Mueller LA; Zeeman SC; Ludewig F; Stitt M; Sonnewald U; Neuhaus HE; Fernie AR
    Plant J; 2020 Jun; 102(6):1202-1219. PubMed ID: 31950549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Provitamin A biofortification of cassava enhances shelf life but reduces dry matter content of storage roots due to altered carbon partitioning into starch.
    Beyene G; Solomon FR; Chauhan RD; Gaitán-Solis E; Narayanan N; Gehan J; Siritunga D; Stevens RL; Jifon J; Van Eck J; Linsler E; Gehan M; Ilyas M; Fregene M; Sayre RT; Anderson P; Taylor NJ; Cahoon EB
    Plant Biotechnol J; 2018 Jun; 16(6):1186-1200. PubMed ID: 29193665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transgenic expression of DwMYB2 impairs iron transport from root to shoot in Arabidopsis thaliana.
    Chen YH; Wu XM; Ling HQ; Yang WC
    Cell Res; 2006 Oct; 16(10):830-40. PubMed ID: 17031393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NRAMP genes function in Arabidopsis thaliana resistance to Erwinia chrysanthemi infection.
    Segond D; Dellagi A; Lanquar V; Rigault M; Patrit O; Thomine S; Expert D
    Plant J; 2009 Apr; 58(2):195-207. PubMed ID: 19121106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of cyanogen-free transgenic cassava.
    Siritunga D; Sayre RT
    Planta; 2003 Jul; 217(3):367-73. PubMed ID: 14520563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular and phenotypic characterization of transgenic soybean expressing the Arabidopsis ferric chelate reductase gene, FRO2.
    Vasconcelos M; Eckert H; Arahana V; Graef G; Grusak MA; Clemente T
    Planta; 2006 Oct; 224(5):1116-28. PubMed ID: 16741749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transgenic salt-tolerant sugar beet (Beta vulgaris L.) constitutively expressing an Arabidopsis thaliana vacuolar Na/H antiporter gene, AtNHX3, accumulates more soluble sugar but less salt in storage roots.
    Liu H; Wang Q; Yu M; Zhang Y; Wu Y; Zhang H
    Plant Cell Environ; 2008 Sep; 31(9):1325-34. PubMed ID: 18518917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two cassava promoters related to vascular expression and storage root formation.
    Zhang P; Bohl-Zenger S; Puonti-Kaerlas J; Potrykus I; Gruissem W
    Planta; 2003 Dec; 218(2):192-203. PubMed ID: 13680228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iron Availability within the Leaf Vasculature Determines the Magnitude of Iron Deficiency Responses in Source and Sink Tissues in Arabidopsis.
    Nguyen NT; Khan MA; Castro-Guerrero NA; Chia JC; Vatamaniuk OK; Mari S; Jurisson SS; Mendoza-Cozatl DG
    Plant Cell Physiol; 2022 Jun; 63(6):829-841. PubMed ID: 35388430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.