BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 26475221)

  • 21. Stair ascent kinematics and kinetics with a powered lower leg system following transtibial amputation.
    Aldridge JM; Sturdy JT; Wilken JM
    Gait Posture; 2012 Jun; 36(2):291-5. PubMed ID: 22571821
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Local dynamic stability of lower extremity joints in lower limb amputees during slope walking.
    Chen JL; Gu DY
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():7241-4. PubMed ID: 24111416
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamic balance changes within three weeks of fitting a new prosthetic foot component.
    Kent JA; Stergiou N; Wurdeman SR
    Gait Posture; 2017 Oct; 58():23-29. PubMed ID: 28704685
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A more compliant prosthetic foot better accommodates added load while walking among Servicemembers with transtibial limb loss.
    Schnall BL; Dearth CL; Elrod JM; Golyski PR; Koehler-McNicholas SR; Ray SF; Hansen AH; Hendershot BD
    J Biomech; 2020 Jan; 98():109395. PubMed ID: 31668413
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cognitive performance and brain dynamics during walking with a novel bionic foot: A pilot study.
    De Pauw K; Cherelle P; Tassignon B; Van Cutsem J; Roelands B; Marulanda FG; Lefeber D; Vanderborght B; Meeusen R
    PLoS One; 2019; 14(4):e0214711. PubMed ID: 30943265
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Changes to level ground transtibial amputee gait with a weighted backpack.
    Doyle SS; Lemaire ED; Besemann M; Dudek NL
    Clin Biomech (Bristol, Avon); 2014 Feb; 29(2):149-54. PubMed ID: 24355702
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional joint center of prosthetic feet during level ground and incline walking.
    Lecomte C; Starker F; Guðnadóttir EÞ; Rafnsdóttir S; Guðmundsson K; Briem K; Brynjolfsson S
    Med Eng Phys; 2020 Jul; 81():13-21. PubMed ID: 32527519
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Benefits of a microprocessor-controlled prosthetic foot for ascending and descending slopes.
    Ernst M; Altenburg B; Schmalz T; Kannenberg A; Bellmann M
    J Neuroeng Rehabil; 2022 Jan; 19(1):9. PubMed ID: 35090505
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impact on the biomechanics of overground gait of using an 'Echelon' hydraulic ankle-foot device in unilateral trans-tibial and trans-femoral amputees.
    De Asha AR; Munjal R; Kulkarni J; Buckley JG
    Clin Biomech (Bristol, Avon); 2014 Aug; 29(7):728-34. PubMed ID: 24997811
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A comparative study of conventional and energy-storing prosthetic feet in high-functioning transfemoral amputees.
    Graham LE; Datta D; Heller B; Howitt J; Pros D
    Arch Phys Med Rehabil; 2007 Jun; 88(6):801-6. PubMed ID: 17532907
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits.
    Au S; Berniker M; Herr H
    Neural Netw; 2008 May; 21(4):654-66. PubMed ID: 18499394
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Frontal plane pelvis and hip kinematics of transfemoral amputee gait. Effect of a prosthetic foot with active ankle dorsiflexion and individualized training - a case study.
    Armannsdottir A; Tranberg R; Halldorsdottir G; Briem K
    Disabil Rehabil Assist Technol; 2018 May; 13(4):388-393. PubMed ID: 28974119
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gait termination in lower limb amputees.
    Vrieling AH; van Keeken HG; Schoppen T; Otten E; Halbertsma JP; Hof AL; Postema K
    Gait Posture; 2008 Jan; 27(1):82-90. PubMed ID: 17376689
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The AMP-Foot 3, new generation propulsive prosthetic feet with explosive motion characteristics: design and validation.
    Cherelle P; Grosu V; Cestari M; Vanderborght B; Lefeber D
    Biomed Eng Online; 2016 Dec; 15(Suppl 3):145. PubMed ID: 28105954
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Variable stiffness foot design and validation.
    Lecomte C; Ármannsdóttir AL; Starker F; Tryggvason H; Briem K; Brynjolfsson S
    J Biomech; 2021 Jun; 122():110440. PubMed ID: 33901938
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effects of prosthetic ankle stiffness on ankle and knee kinematics, prosthetic limb loading, and net metabolic cost of trans-tibial amputee gait.
    Major MJ; Twiste M; Kenney LP; Howard D
    Clin Biomech (Bristol, Avon); 2014 Jan; 29(1):98-104. PubMed ID: 24238976
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sensitivity of lower-limb joint mechanics to prosthetic forefoot stiffness with a variable stiffness foot in level-ground walking.
    Nichols KM; Adamczyk PG
    J Biomech; 2023 Jan; 147():111436. PubMed ID: 36701959
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The dead spot phenomenon in prosthetic gait: Quantified with an analysis of center of pressure progression and its velocity in the sagittal plane.
    Klenow TD; Kahle JT; Highsmith MJ
    Clin Biomech (Bristol, Avon); 2016 Oct; 38():56-62. PubMed ID: 27580450
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Once-per-step control of ankle-foot prosthesis push-off work reduces effort associated with balance during walking.
    Kim M; Collins SH
    J Neuroeng Rehabil; 2015 May; 12():43. PubMed ID: 25928176
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Standing on slopes - how current microprocessor-controlled prosthetic feet support transtibial and transfemoral amputees in an everyday task.
    Ernst M; Altenburg B; Bellmann M; Schmalz T
    J Neuroeng Rehabil; 2017 Nov; 14(1):117. PubMed ID: 29145876
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.