BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

406 related articles for article (PubMed ID: 26475290)

  • 1. Impaired energy metabolism of the taurine‑deficient heart.
    Schaffer SW; Shimada-Takaura K; Jong CJ; Ito T; Takahashi K
    Amino Acids; 2016 Feb; 48(2):549-58. PubMed ID: 26475290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of pyruvate dehydrogenase activity and citric acid cycle intermediates during high cardiac power generation.
    Sharma N; Okere IC; Brunengraber DZ; McElfresh TA; King KL; Sterk JP; Huang H; Chandler MP; Stanley WC
    J Physiol; 2005 Jan; 562(Pt 2):593-603. PubMed ID: 15550462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Palmitate oxidation by the mitochondria from volume-overloaded rat hearts.
    Christian B; El Alaoui-Talibi Z; Moravec M; Moravec J
    Mol Cell Biochem; 1998 Mar; 180(1-2):117-28. PubMed ID: 9546638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recruitment of compensatory pathways to sustain oxidative flux with reduced carnitine palmitoyltransferase I activity characterizes inefficiency in energy metabolism in hypertrophied hearts.
    Sorokina N; O'Donnell JM; McKinney RD; Pound KM; Woldegiorgis G; LaNoue KF; Ballal K; Taegtmeyer H; Buttrick PM; Lewandowski ED
    Circulation; 2007 Apr; 115(15):2033-41. PubMed ID: 17404155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyperpolarized (13)C magnetic resonance reveals early- and late-onset changes to in vivo pyruvate metabolism in the failing heart.
    Schroeder MA; Lau AZ; Chen AP; Gu Y; Nagendran J; Barry J; Hu X; Dyck JR; Tyler DJ; Clarke K; Connelly KA; Wright GA; Cunningham CH
    Eur J Heart Fail; 2013 Feb; 15(2):130-40. PubMed ID: 23258802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulating cardiac energy metabolism and bioenergetics by targeting the DNA damage repair protein BRCA1.
    Singh KK; Shukla PC; Yanagawa B; Quan A; Lovren F; Pan Y; Wagg CS; Teoh H; Lopaschuk GD; Verma S
    J Thorac Cardiovasc Surg; 2013 Sep; 146(3):702-9. PubMed ID: 23317938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impaired Energy Production Contributes to Development of Failure in Taurine Deficient Heart.
    Schaffer S; Jong CJ; Shetewy A; Ramila KC; Ito T
    Adv Exp Med Biol; 2017; 975 Pt 1():435-446. PubMed ID: 28849473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The ubiquitin-proteasome system and autophagy are defective in the taurine-deficient heart.
    Jong CJ; Ito T; Schaffer SW
    Amino Acids; 2015 Dec; 47(12):2609-22. PubMed ID: 26193770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. c-Myc programs fatty acid metabolism and dictates acetyl-CoA abundance and fate.
    Edmunds LR; Sharma L; Kang A; Lu J; Vockley J; Basu S; Uppala R; Goetzman ES; Beck ME; Scott D; Prochownik EV
    J Biol Chem; 2014 Sep; 289(36):25382-92. PubMed ID: 25053415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remodeling of substrate consumption in the murine sTAC model of heart failure.
    Turer A; Altamirano F; Schiattarella GG; May H; Gillette TG; Malloy CR; Merritt ME
    J Mol Cell Cardiol; 2019 Sep; 134():144-153. PubMed ID: 31340162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of Mitochondria and Endoplasmic Reticulum in Taurine-Deficiency-Mediated Apoptosis.
    Jong CJ; Ito T; Prentice H; Wu JY; Schaffer SW
    Nutrients; 2017 Jul; 9(8):. PubMed ID: 28757580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on the effects of coenzyme A-SH: acetyl coenzyme A, nicotinamide adenine dinucleotide: reduced nicotinamide adenine dinucleotide, and adenosine diphosphate: adenosine triphosphate ratios on the interconversion of active and inactive pyruvate dehydrogenase in isolated rat heart mitochondria.
    Hansford RG
    J Biol Chem; 1976 Sep; 251(18):5483-9. PubMed ID: 184082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parallel activation of mitochondrial oxidative metabolism with increased cardiac energy expenditure is not dependent on fatty acid oxidation in pigs.
    Zhou L; Cabrera ME; Huang H; Yuan CL; Monika DK; Sharma N; Bian F; Stanley WC
    J Physiol; 2007 Mar; 579(Pt 3):811-21. PubMed ID: 17185335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cardiac insulin-resistance and decreased mitochondrial energy production precede the development of systolic heart failure after pressure-overload hypertrophy.
    Zhang L; Jaswal JS; Ussher JR; Sankaralingam S; Wagg C; Zaugg M; Lopaschuk GD
    Circ Heart Fail; 2013 Sep; 6(5):1039-48. PubMed ID: 23861485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The heart is better protected against myocardial infarction in the fed state compared to the fasted state.
    Liepinsh E; Makrecka M; Kuka J; Makarova E; Vilskersts R; Cirule H; Sevostjanovs E; Grinberga S; Pugovics O; Dambrova M
    Metabolism; 2014 Jan; 63(1):127-36. PubMed ID: 24140100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Profiling substrate fluxes in the isolated working mouse heart using 13C-labeled substrates: focusing on the origin and fate of pyruvate and citrate carbons.
    Khairallah M; Labarthe F; Bouchard B; Danialou G; Petrof BJ; Des Rosiers C
    Am J Physiol Heart Circ Physiol; 2004 Apr; 286(4):H1461-70. PubMed ID: 14670819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduced effects of L-carnitine on glucose and fatty acid metabolism in myocytes isolated from diabetic rats.
    Abdel-aleem S; Karim AM; Zarouk WA; Taylor DA; el-Awady MK; Lowe JE
    Horm Metab Res; 1997 Sep; 29(9):430-5. PubMed ID: 9370110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytosolic carnitine acetyltransferase as a source of cytosolic acetyl-CoA: a possible mechanism for regulation of cardiac energy metabolism.
    Altamimi TR; Thomas PD; Darwesh AM; Fillmore N; Mahmoud MU; Zhang L; Gupta A; Al Batran R; Seubert JM; Lopaschuk GD
    Biochem J; 2018 Mar; 475(5):959-976. PubMed ID: 29438065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Propionate-induced changes in cardiac metabolism, notably CoA trapping, are not altered by l-carnitine.
    Wang Y; Christopher BA; Wilson KA; Muoio D; McGarrah RW; Brunengraber H; Zhang GF
    Am J Physiol Endocrinol Metab; 2018 Oct; 315(4):E622-E633. PubMed ID: 30016154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of dietary taurine supplementation on GSH and NAD(P)-redox status, lipid peroxidation, and energy metabolism in diabetic precataractous lens.
    Obrosova IG; Stevens MJ
    Invest Ophthalmol Vis Sci; 1999 Mar; 40(3):680-8. PubMed ID: 10067971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.