These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 26475465)

  • 1. Microbial Cell Factories for Diol Production.
    Sabra W; Groeger C; Zeng AP
    Adv Biochem Eng Biotechnol; 2016; 155():165-97. PubMed ID: 26475465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial production of diols as platform chemicals: recent progresses.
    Zeng AP; Sabra W
    Curr Opin Biotechnol; 2011 Dec; 22(6):749-57. PubMed ID: 21646010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The pH effects on the distribution of 1,3-propanediol and 2,3-butanediol produced simultaneously by using an isolated indigenous Klebsiella sp. Ana-WS5.
    Yen HW; Li FT; Wong CL; Chang JS
    Bioprocess Biosyst Eng; 2014 Mar; 37(3):425-31. PubMed ID: 23852040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cofactor Engineering for Enhanced Production of Diols by Klebsiella pneumoniae From Co-Substrate.
    Wang M; Zhou Y; Tan T
    Biotechnol J; 2017 Nov; 12(11):. PubMed ID: 28834346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of dissolved oxygen level on the distribution of 1,3-propanediol and 2,3-butanediol produced from glycerol by an isolated indigenous Klebsiella sp. Ana-WS5.
    Yen HW; Li FT; Chang JS
    Bioresour Technol; 2014 Feb; 153():374-8. PubMed ID: 24369989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial production of short chain diols.
    Jiang Y; Liu W; Zou H; Cheng T; Tian N; Xian M
    Microb Cell Fact; 2014 Dec; 13():165. PubMed ID: 25491899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of acetolactate synthase inactivation on 1,3-propanediol fermentation by Klebsiella pneumoniae.
    Zhou S; Huang Y; Mao X; Li L; Guo C; Gao Y; Qin Q
    PLoS One; 2019; 14(4):e0200978. PubMed ID: 31017890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of mutation of 2,3-butanediol formation pathway on glycerol metabolism and 1,3-propanediol production by Klebsiella pneumoniae J2B.
    Kumar V; Durgapal M; Sankaranarayanan M; Somasundar A; Rathnasingh C; Song H; Seung D; Park S
    Bioresour Technol; 2016 Aug; 214():432-440. PubMed ID: 27160953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial synthesis of C3-C5 diols via extending amino acid catabolism.
    Wang J; Li C; Zou Y; Yan Y
    Proc Natl Acad Sci U S A; 2020 Aug; 117(32):19159-19167. PubMed ID: 32719126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of C2-C4 diols from bioresources: Pathways and metabolic intervention strategies.
    Paul Alphy M; Hakkim Hazeena S; Binoop M; Madhavan A; Arun KB; Vivek N; Sindhu R; Kumar Awasthi M; Binod P
    Bioresour Technol; 2022 Feb; 346():126410. PubMed ID: 34838635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of an oxygen-inducible nar promoter system in metabolic engineering for production of biochemicals in Escherichia coli.
    Hwang HJ; Kim JW; Ju SY; Park JH; Lee PC
    Biotechnol Bioeng; 2017 Feb; 114(2):468-473. PubMed ID: 27543929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High production of enantiopure (R,R)-2,3-butanediol from crude glycerol by Klebsiella pneumoniae with an engineered oxidative pathway and a two-stage agitation strategy.
    Jo MH; Ju JH; Heo SY; Son CB; Jeong KJ; Oh BR
    Microb Cell Fact; 2024 Jul; 23(1):205. PubMed ID: 39044245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol.
    Xiu ZL; Zeng AP
    Appl Microbiol Biotechnol; 2008 Apr; 78(6):917-26. PubMed ID: 18320188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering of Saccharomyces cerevisiae for 2,3-butanediol production.
    Kim SJ; Kim JW; Lee YG; Park YC; Seo JH
    Appl Microbiol Biotechnol; 2017 Mar; 101(6):2241-2250. PubMed ID: 28204883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioengineering for the industrial production of 2,3-butanediol by the yeast, Saccharomyces cerevisiae.
    Mitsui R; Yamada R; Matsumoto T; Ogino H
    World J Microbiol Biotechnol; 2022 Jan; 38(3):38. PubMed ID: 35018511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid and stable production of 2,3-butanediol by an engineered Saccharomyces cerevisiae strain in a continuous airlift bioreactor.
    Yamada R; Nishikawa R; Wakita K; Ogino H
    J Ind Microbiol Biotechnol; 2018 May; 45(5):305-311. PubMed ID: 29605870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Screening of novel bacteria for the 2,3-butanediol production.
    Kallbach M; Horn S; Kuenz A; Prüße U
    Appl Microbiol Biotechnol; 2017 Feb; 101(3):1025-1033. PubMed ID: 27687995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Short chain diol metabolism in human disease states.
    Casazza JP; Song BJ; Veech RL
    Trends Biochem Sci; 1990 Jan; 15(1):26-30. PubMed ID: 2107613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rational engineering of diol dehydratase enables 1,4-butanediol biosynthesis from xylose.
    Wang J; Jain R; Shen X; Sun X; Cheng M; Liao JC; Yuan Q; Yan Y
    Metab Eng; 2017 Mar; 40():148-156. PubMed ID: 28215518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New pathways and metabolic engineering strategies for microbial synthesis of diols.
    Cen X; Dong Y; Liu D; Chen Z
    Curr Opin Biotechnol; 2022 Dec; 78():102845. PubMed ID: 36403537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.