These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 26475831)

  • 1. Activities of the peptidyl transferase center of ribosomes lacking protein L27.
    Maracci C; Wohlgemuth I; Rodnina MV
    RNA; 2015 Dec; 21(12):2047-52. PubMed ID: 26475831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of ribosomal protein L27 in peptidyl transfer.
    Trobro S; Aqvist J
    Biochemistry; 2008 Apr; 47(17):4898-906. PubMed ID: 18393533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ribosomal protein L27 participates in both 50 S subunit assembly and the peptidyl transferase reaction.
    Wower IK; Wower J; Zimmermann RA
    J Biol Chem; 1998 Jul; 273(31):19847-52. PubMed ID: 9677420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A protein component at the heart of an RNA machine: the importance of protein l27 for the function of the bacterial ribosome.
    Maguire BA; Beniaminov AD; Ramu H; Mankin AS; Zimmermann RA
    Mol Cell; 2005 Nov; 20(3):427-35. PubMed ID: 16285924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specific N-terminal cleavage of ribosomal protein L27 in Staphylococcus aureus and related bacteria.
    Wall EA; Caufield JH; Lyons CE; Manning KA; Dokland T; Christie GE
    Mol Microbiol; 2015 Jan; 95(2):258-69. PubMed ID: 25388641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the ribosomal protein L27 revealed by single-molecule FRET study.
    Wang Y; Xiao M
    Protein Sci; 2012 Nov; 21(11):1696-704. PubMed ID: 22930421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. L27-tRNA interaction revealed by mutagenesis and pH titration.
    Xiao M; Wang Y
    Biophys Chem; 2012 Jun; 167():8-15. PubMed ID: 22634088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Importance of tRNA interactions with 23S rRNA for peptide bond formation on the ribosome: studies with substrate analogs.
    Beringer M; Rodnina MV
    Biol Chem; 2007 Jul; 388(7):687-91. PubMed ID: 17570820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ribosomal features essential for tna operon induction: tryptophan binding at the peptidyl transferase center.
    Cruz-Vera LR; New A; Squires C; Yanofsky C
    J Bacteriol; 2007 Apr; 189(8):3140-6. PubMed ID: 17293420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An induced-fit mechanism to promote peptide bond formation and exclude hydrolysis of peptidyl-tRNA.
    Schmeing TM; Huang KS; Strobel SA; Steitz TA
    Nature; 2005 Nov; 438(7067):520-4. PubMed ID: 16306996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of peptide bond formation on the ribosome.
    Rodnina MV; Beringer M; Wintermeyer W
    Q Rev Biophys; 2006 Aug; 39(3):203-25. PubMed ID: 16893477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peptide bond formation does not involve acid-base catalysis by ribosomal residues.
    Bieling P; Beringer M; Adio S; Rodnina MV
    Nat Struct Mol Biol; 2006 May; 13(5):423-8. PubMed ID: 16648860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes produced by bound tryptophan in the ribosome peptidyl transferase center in response to TnaC, a nascent leader peptide.
    Cruz-Vera LR; Gong M; Yanofsky C
    Proc Natl Acad Sci U S A; 2006 Mar; 103(10):3598-603. PubMed ID: 16505360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SPARK--a novel method to monitor ribosomal peptidyl transferase activity.
    Polacek N; Swaney S; Shinabarger D; Mankin AS
    Biochemistry; 2002 Oct; 41(39):11602-10. PubMed ID: 12269803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Essential mechanisms in the catalysis of peptide bond formation on the ribosome.
    Beringer M; Bruell C; Xiong L; Pfister P; Bieling P; Katunin VI; Mankin AS; Böttger EC; Rodnina MV
    J Biol Chem; 2005 Oct; 280(43):36065-72. PubMed ID: 16129670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. β-Puromycin selection of modified ribosomes for in vitro incorporation of β-amino acids.
    Dedkova LM; Fahmi NE; Paul R; del Rosario M; Zhang L; Chen S; Feder G; Hecht SM
    Biochemistry; 2012 Jan; 51(1):401-15. PubMed ID: 22145951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ribosome recycling factor and release factor 3 action promotes TnaC-peptidyl-tRNA Dropoff and relieves ribosome stalling during tryptophan induction of tna operon expression in Escherichia coli.
    Gong M; Cruz-Vera LR; Yanofsky C
    J Bacteriol; 2007 Apr; 189(8):3147-55. PubMed ID: 17293419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Proteins contacting with peptidyl-tRNA at the A-site of the Escherichia coli ribosome after enzymatic and non-enzymatic binding of aminoacyl-tRNA].
    Abdurashidova GG; Ovsepian VA; Budovskiĭ EI
    Mol Biol (Mosk); 1985; 19(4):1148-52. PubMed ID: 2413346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Important contribution to catalysis of peptide bond formation by a single ionizing group within the ribosome.
    Katunin VI; Muth GW; Strobel SA; Wintermeyer W; Rodnina MV
    Mol Cell; 2002 Aug; 10(2):339-46. PubMed ID: 12191479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Peptidyltransferase center of ribosomes. Structure and relationship to other ribosomal functions].
    Kukhanova MK; Kraevskiĭ AA; Gottikh BP
    Mol Biol (Mosk); 1977; 11(6):1357-76. PubMed ID: 36555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.