These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 26476101)

  • 1. Photosynthetic response to globally increasing CO2 of co-occurring temperate seagrass species.
    Borum J; Pedersen O; Kotula L; Fraser MW; Statton J; Colmer TD; Kendrick GA
    Plant Cell Environ; 2016 Jun; 39(6):1240-50. PubMed ID: 26476101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strong leaf surface basification and CO
    Brodersen KE; Koren K; Revsbech NP; Kühl M
    Plant Cell Environ; 2020 Jan; 43(1):174-187. PubMed ID: 31429088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photorespiration and carbon limitation determine productivity in temperate seagrasses.
    Buapet P; Rasmusson LM; Gullström M; Björk M
    PLoS One; 2013; 8(12):e83804. PubMed ID: 24376754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrate fertilisation does not enhance CO2 responses in two tropical seagrass species.
    Ow YX; Vogel N; Collier CJ; Holtum JA; Flores F; Uthicke S
    Sci Rep; 2016 Mar; 6():23093. PubMed ID: 26976685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determining light stress responses for a tropical multi-species seagrass assemblage.
    Statton J; McMahon K; Lavery P; Kendrick GA
    Mar Pollut Bull; 2018 Mar; 128():508-518. PubMed ID: 29571402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon-concentrating mechanisms in seagrasses.
    Larkum AWD; Davey PA; Kuo J; Ralph PJ; Raven JA
    J Exp Bot; 2017 Jun; 68(14):3773-3784. PubMed ID: 28911056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct uptake of HCO
    Rubio L; García D; García-Sánchez MJ; Niell FX; Felle HH; Fernández JA
    Plant Cell Environ; 2017 Nov; 40(11):2820-2830. PubMed ID: 28815648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of O2 as an electron acceptor alternative to CO2 in photosynthesis of the common marine angiosperm Zostera marina L.
    Buapet P; Björk M
    Photosynth Res; 2016 Jul; 129(1):59-69. PubMed ID: 27125819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Net uptake of atmospheric CO2 by coastal submerged aquatic vegetation.
    Tokoro T; Hosokawa S; Miyoshi E; Tada K; Watanabe K; Montani S; Kayanne H; Kuwae T
    Glob Chang Biol; 2014 Jun; 20(6):1873-84. PubMed ID: 24623530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The differential ability of two species of seagrass to use carbon dioxide and bicarbonate and their modelled response to rising concentrations of inorganic carbon.
    Maberly SC; Stott AW; Gontero B
    Front Plant Sci; 2022; 13():936716. PubMed ID: 36388529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catchment properties and the photosynthetic trait composition of freshwater plant communities.
    Iversen LL; Winkel A; Baastrup-Spohr L; Hinke AB; Alahuhta J; Baattrup-Pedersen A; Birk S; Brodersen P; Chambers PA; Ecke F; Feldmann T; Gebler D; Heino J; Jespersen TS; Moe SJ; Riis T; Sass L; Vestergaard O; Maberly SC; Sand-Jensen K; Pedersen O
    Science; 2019 Nov; 366(6467):878-881. PubMed ID: 31727836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Responses of CO
    Huang W; Jin Q; Yin L; Li W
    Ecotoxicol Environ Saf; 2020 Oct; 202():110955. PubMed ID: 32800229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seagrass habitat metabolism increases short-term extremes and long-term offset of CO
    Pacella SR; Brown CA; Waldbusser GG; Labiosa RG; Hales B
    Proc Natl Acad Sci U S A; 2018 Apr; 115(15):3870-3875. PubMed ID: 29610330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Responses of four Indo-West Pacific seagrass species to shading.
    Collier CJ; Waycott M; Ospina AG
    Mar Pollut Bull; 2012; 65(4-9):342-54. PubMed ID: 21741666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imaging O
    Elgetti Brodersen K; Kühl M; Trampe E; Koren K
    Plant J; 2020 Dec; 104(6):1504-1519. PubMed ID: 33037691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of a whole plant Q10 to assess seagrass productivity during temperature shifts.
    Rasmusson LM; Gullström M; Gunnarsson PCB; George R; Björk M
    Sci Rep; 2019 Sep; 9(1):12667. PubMed ID: 31477782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heat stress of two tropical seagrass species during low tides - impact on underwater net photosynthesis, dark respiration and diel in situ internal aeration.
    Pedersen O; Colmer TD; Borum J; Zavala-Perez A; Kendrick GA
    New Phytol; 2016 Jun; 210(4):1207-18. PubMed ID: 26914396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ocean acidification alleviates low-temperature effects on growth and photosynthesis of the red alga Neosiphonia harveyi (Rhodophyta).
    Olischläger M; Wiencke C
    J Exp Bot; 2013 Dec; 64(18):5587-97. PubMed ID: 24127518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light Levels Affect Carbon Utilisation in Tropical Seagrass under Ocean Acidification.
    Ow YX; Uthicke S; Collier CJ
    PLoS One; 2016; 11(3):e0150352. PubMed ID: 26938454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Seagrasses in tropical Australia, productive and abundant for decades decimated overnight.
    Pollard PC; Greenway M
    J Biosci; 2013 Mar; 38(1):157-66. PubMed ID: 23385823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.