These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
268 related articles for article (PubMed ID: 26476203)
1. Gold nanostars: Benzyldimethylammonium chloride-assisted synthesis, plasmon tuning, SERS and catalytic activity. Ndokoye P; Li X; Zhao Q; Li T; Tade MO; Liu S J Colloid Interface Sci; 2016 Jan; 462():341-50. PubMed ID: 26476203 [TBL] [Abstract][Full Text] [Related]
2. Developing an aqueous approach for synthesizing Au and M@Au (M = Pd, CuPt) hybrid nanostars with plasmonic properties. Du J; Yu J; Xiong Y; Lin Z; Zhang H; Yang D Phys Chem Chem Phys; 2015 Jan; 17(2):1265-72. PubMed ID: 25420730 [TBL] [Abstract][Full Text] [Related]
3. Differences between surfactant-free Au@Ag and CTAB-stabilized Au@Ag star-like nanoparticles in the preparation of nanoarrays to improve their surface-enhanced Raman scattering (SERS) performance. Van Vu S; Nguyen AT; Cao Tran AT; Thi Le VH; Lo TNH; Ho TH; Pham NNT; Park I; Vo KQ Nanoscale Adv; 2023 Oct; 5(20):5543-5561. PubMed ID: 37822906 [TBL] [Abstract][Full Text] [Related]
4. Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction. Saha S; Pal A; Kundu S; Basu S; Pal T Langmuir; 2010 Feb; 26(4):2885-93. PubMed ID: 19957940 [TBL] [Abstract][Full Text] [Related]
5. Cetyltrimethylammonium bromide-modified spherical and cube-like gold nanoparticles as extrinsic Raman labels in surface-enhanced Raman spectroscopy based heterogeneous immunoassays. Narayanan R; Lipert RJ; Porter MD Anal Chem; 2008 Mar; 80(6):2265-71. PubMed ID: 18290676 [TBL] [Abstract][Full Text] [Related]
6. Catalytic reduction of 4-nitrophenol using biogenic gold and silver nanoparticles derived from Breynia rhamnoides. Gangula A; Podila R; M R; Karanam L; Janardhana C; Rao AM Langmuir; 2011 Dec; 27(24):15268-74. PubMed ID: 22026721 [TBL] [Abstract][Full Text] [Related]
7. Branch number matters: Promoting catalytic reduction of 4-nitrophenol over gold nanostars by raising the number of branches and coating with mesoporous SiO2. Ndokoye P; Zhao Q; Li X; Li T; Tade MO; Wang S J Colloid Interface Sci; 2016 Sep; 477():1-7. PubMed ID: 27235790 [TBL] [Abstract][Full Text] [Related]
8. Synthesis of self-supporting gold microstructures with three-dimensional morphologies by direct replication of diatom templates. Yu Y; Addai-Mensah J; Losic D Langmuir; 2010 Sep; 26(17):14068-72. PubMed ID: 20666460 [TBL] [Abstract][Full Text] [Related]
9. Au(III)-CTAB reduction by ascorbic acid: preparation and characterization of gold nanoparticles. Khan Z; Singh T; Hussain JI; Hashmi AA Colloids Surf B Biointerfaces; 2013 Apr; 104():11-7. PubMed ID: 23298582 [TBL] [Abstract][Full Text] [Related]
10. Au-Ag-Au double shell nanoparticles-based localized surface plasmon resonance and surface-enhanced Raman scattering biosensor for sensitive detection of 2-mercapto-1-methylimidazole. Liao X; Chen Y; Qin M; Chen Y; Yang L; Zhang H; Tian Y Talanta; 2013 Dec; 117():203-8. PubMed ID: 24209331 [TBL] [Abstract][Full Text] [Related]
11. Gold nanoparticles with tipped surface structures as substrates for single-particle surface-enhanced Raman spectroscopy: concave nanocubes, nanotrisoctahedra, and nanostars. Zhang Q; Large N; Wang H ACS Appl Mater Interfaces; 2014 Oct; 6(19):17255-67. PubMed ID: 25222940 [TBL] [Abstract][Full Text] [Related]
12. High-yield synthesis of multi-branched gold nanoparticles and their surface-enhanced Raman scattering properties. Jeong GH; Lee YW; Kim M; Han SW J Colloid Interface Sci; 2009 Jan; 329(1):97-102. PubMed ID: 18945444 [TBL] [Abstract][Full Text] [Related]
13. One-pot synthesis of M (M = Ag, Au)@SiO2 yolk-shell structures via an organosilane-assisted method: preparation, formation mechanism and application in heterogeneous catalysis. Chen Y; Wang Q; Wang T Dalton Trans; 2015 May; 44(19):8867-75. PubMed ID: 25869174 [TBL] [Abstract][Full Text] [Related]
15. The IP₆ micelle-stabilized small Ag cluster for synthesizing Ag-Au alloy nanoparticles and the tunable surface plasmon resonance effect. Wang N; Wen Y; Wang Y; Zhang R; Chen X; Ling B; Huan S; Yang H Nanotechnology; 2012 Apr; 23(14):145702. PubMed ID: 22434016 [TBL] [Abstract][Full Text] [Related]
16. Probing the surface-enhanced Raman scattering properties of Au-Ag nanocages at two different excitation wavelengths. Rycenga M; Hou KK; Cobley CM; Schwartz AG; Camargo PH; Xia Y Phys Chem Chem Phys; 2009 Jul; 11(28):5903-8. PubMed ID: 19588011 [TBL] [Abstract][Full Text] [Related]
17. Self-assembled silver nanochains for surface-enhanced Raman scattering. Yang Y; Shi J; Tanaka T; Nogami M Langmuir; 2007 Nov; 23(24):12042-7. PubMed ID: 17963408 [TBL] [Abstract][Full Text] [Related]
18. Ag dendrite-based Au/Ag bimetallic nanostructures with strongly enhanced catalytic activity. Huang J; Vongehr S; Tang S; Lu H; Shen J; Meng X Langmuir; 2009 Oct; 25(19):11890-6. PubMed ID: 19788231 [TBL] [Abstract][Full Text] [Related]
19. Synergistic effect in an Au-Ag alloy nanocatalyst: CO oxidation. Liu JH; Wang AQ; Chi YS; Lin HP; Mou CY J Phys Chem B; 2005 Jan; 109(1):40-3. PubMed ID: 16850981 [TBL] [Abstract][Full Text] [Related]
20. One-step sonoelectrochemical fabrication of gold nanoparticle/carbon nanosheet hybrids for efficient surface-enhanced Raman scattering. Zhang K; Yao S; Li G; Hu Y Nanoscale; 2015 Feb; 7(6):2659-66. PubMed ID: 25580806 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]