These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 26476237)

  • 1. Lessons learned from multi-scale modeling of the failing heart.
    Gomez JF; Cardona K; Trenor B
    J Mol Cell Cardiol; 2015 Dec; 89(Pt B):146-59. PubMed ID: 26476237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrophysiological changes in heart failure and their implications for arrhythmogenesis.
    Coronel R; Wilders R; Verkerk AO; Wiegerinck RF; Benoist D; Bernus O
    Biochim Biophys Acta; 2013 Dec; 1832(12):2432-41. PubMed ID: 23579069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrophysiological and structural remodeling in heart failure modulate arrhythmogenesis. 1D simulation study.
    Gomez JF; Cardona K; Romero L; Ferrero JM; Trenor B
    PLoS One; 2014; 9(9):e106602. PubMed ID: 25191998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation and mechanistic investigation of the arrhythmogenic role of the late sodium current in human heart failure.
    Trenor B; Cardona K; Gomez JF; Rajamani S; Ferrero JM; Belardinelli L; Saiz J
    PLoS One; 2012; 7(3):e32659. PubMed ID: 22427860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative systems models illuminate arrhythmia mechanisms in heart failure: Role of the Na
    Morotti S; Grandi E
    Wiley Interdiscip Rev Syst Biol Med; 2019 Mar; 11(2):e1434. PubMed ID: 30015404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arrhythmia mechanisms in the failing heart.
    Jin H; Lyon AR; Akar FG
    Pacing Clin Electrophysiol; 2008 Aug; 31(8):1048-56. PubMed ID: 18684263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arrhythmogenic Remodeling in the Failing Heart.
    Husti Z; Varró A; Baczkó I
    Cells; 2021 Nov; 10(11):. PubMed ID: 34831426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altered spatial calcium regulation enhances electrical heterogeneity in the failing canine left ventricle: implications for electrical instability.
    Iyer V; Heller V; Armoundas AA
    J Appl Physiol (1985); 2012 Mar; 112(6):944-55. PubMed ID: 22194323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrophysiological and structural remodeling in heart failure modulate arrhythmogenesis. 2D simulation study.
    Gomez JF; Cardona K; Martinez L; Saiz J; Trenor B
    PLoS One; 2014; 9(7):e103273. PubMed ID: 25054335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NS5806 partially restores action potential duration but fails to ameliorate calcium transient dysfunction in a computational model of canine heart failure.
    Maleckar MM; Lines GT; Koivumäki JT; Cordeiro JM; Calloe K
    Europace; 2014 Nov; 16 Suppl 4():iv46-iv55. PubMed ID: 25362170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights from an electro-mechanical heart failure cell model: Role of SERCA enhancement on arrhythmogenesis and myocyte contraction.
    Mora MT; Zaza A; Trenor B
    Comput Methods Programs Biomed; 2023 Mar; 230():107350. PubMed ID: 36689807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping arrhythmias in the failing heart: from Langendorff to patient.
    Akar JG; Akar FG
    J Electrocardiol; 2006 Oct; 39(4 Suppl):S19-23. PubMed ID: 16920143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. mRNA expression levels in failing human hearts predict cellular electrophysiological remodeling: a population-based simulation study.
    Walmsley J; Rodriguez JF; Mirams GR; Burrage K; Efimov IR; Rodriguez B
    PLoS One; 2013; 8(2):e56359. PubMed ID: 23437117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Transmural L-type calcium current in a pressure-overloaded mouse model with heart failure].
    Shi CX; Wang YH; Dong F; Zhang YJ; Xu YF
    Sheng Li Xue Bao; 2007 Feb; 59(1):19-26. PubMed ID: 17294038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cardiac computational modeling of ventricular tachycardia and cardiac resynchronization therapy: a clinical perspective.
    Chen Z; Niederer S; Shanmugam N; Sermesant M; Rinaldi CA
    Minerva Cardioangiol; 2017 Aug; 65(4):380-397. PubMed ID: 28215064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arrhythmogenic remodelling of activation and repolarization in the failing human heart.
    Holzem KM; Efimov IR
    Europace; 2012 Nov; 14 Suppl 5(Suppl 5):v50-v57. PubMed ID: 23104915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrophysiologic changes in heart failure: focus on pacemaker channels.
    Sartiani L; Stillitano F; Cerbai E; Mugelli A
    Can J Physiol Pharmacol; 2009 Feb; 87(2):84-90. PubMed ID: 19234571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An electromechanical left ventricular wedge model to study the effects of deformation on repolarization during heart failure.
    Rocha BM; Toledo EM; Barra LP; dos Santos RW
    Biomed Res Int; 2015; 2015():465014. PubMed ID: 26550570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Heart hypertrophy and heart failure--experimental findings for arrhythmogenesis].
    Milberg P; Pott C; Eckardt L; Breithardt G
    Dtsch Med Wochenschr; 2008 Dec; 133 Suppl 8():S285-9. PubMed ID: 19085808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased late sodium current in myocytes from a canine heart failure model and from failing human heart.
    Valdivia CR; Chu WW; Pu J; Foell JD; Haworth RA; Wolff MR; Kamp TJ; Makielski JC
    J Mol Cell Cardiol; 2005 Mar; 38(3):475-83. PubMed ID: 15733907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.