BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 26476452)

  • 1. The ubiquitin ligase HERC3 attenuates NF-κB-dependent transcription independently of its enzymatic activity by delivering the RelA subunit for degradation.
    Hochrainer K; Pejanovic N; Olaseun VA; Zhang S; Iadecola C; Anrather J
    Nucleic Acids Res; 2015 Nov; 43(20):9889-904. PubMed ID: 26476452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. p97/VCP promotes Cullin-RING-ubiquitin-ligase/proteasome-dependent degradation of IκBα and the preceding liberation of RelA from ubiquitinated IκBα.
    Schweitzer K; Pralow A; Naumann M
    J Cell Mol Med; 2016 Jan; 20(1):58-70. PubMed ID: 26463447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monoubiquitination of nuclear RelA negatively regulates NF-κB activity independent of proteasomal degradation.
    Hochrainer K; Racchumi G; Zhang S; Iadecola C; Anrather J
    Cell Mol Life Sci; 2012 Jun; 69(12):2057-73. PubMed ID: 22261743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of NF-kappaB signaling by Pin1-dependent prolyl isomerization and ubiquitin-mediated proteolysis of p65/RelA.
    Ryo A; Suizu F; Yoshida Y; Perrem K; Liou YC; Wulf G; Rottapel R; Yamaoka S; Lu KP
    Mol Cell; 2003 Dec; 12(6):1413-26. PubMed ID: 14690596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. COMMD1 promotes the ubiquitination of NF-kappaB subunits through a cullin-containing ubiquitin ligase.
    Maine GN; Mao X; Komarck CM; Burstein E
    EMBO J; 2007 Jan; 26(2):436-47. PubMed ID: 17183367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GCN5 is a required cofactor for a ubiquitin ligase that targets NF-kappaB/RelA.
    Mao X; Gluck N; Li D; Maine GN; Li H; Zaidi IW; Repaka A; Mayo MW; Burstein E
    Genes Dev; 2009 Apr; 23(7):849-61. PubMed ID: 19339690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced heat shock protein 70 expression alters proteasomal degradation of IkappaB kinase in experimental acute respiratory distress syndrome.
    Weiss YG; Bromberg Z; Raj N; Raphael J; Goloubinoff P; Ben-Neriah Y; Deutschman CS
    Crit Care Med; 2007 Sep; 35(9):2128-38. PubMed ID: 17855826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methodology to study NF-κB/RelA ubiquitination in vivo.
    Li H; Starokadomskyy P; Burstein E
    Methods Mol Biol; 2015; 1280():371-81. PubMed ID: 25736761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of promoter-bound p65/RelA is essential for the prompt termination of the nuclear factor kappaB response.
    Saccani S; Marazzi I; Beg AA; Natoli G
    J Exp Med; 2004 Jul; 200(1):107-13. PubMed ID: 15226358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATM regulates NF-κB-dependent immediate-early genes via RelA Ser 276 phosphorylation coupled to CDK9 promoter recruitment.
    Fang L; Choudhary S; Zhao Y; Edeh CB; Yang C; Boldogh I; Brasier AR
    Nucleic Acids Res; 2014 Jul; 42(13):8416-32. PubMed ID: 24957606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NF-kappaB regulates the stability and activity of p73 by inducing its proteolytic degradation through a ubiquitin-dependent proteasome pathway.
    Kikuchi H; Ozaki T; Furuya K; Hanamoto T; Nakanishi M; Yamamoto H; Yoshida K; Todo S; Nakagawara A
    Oncogene; 2006 Dec; 25(58):7608-17. PubMed ID: 16953234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CSN-associated USP48 confers stability to nuclear NF-κB/RelA by trimming K48-linked Ub-chains.
    Schweitzer K; Naumann M
    Biochim Biophys Acta; 2015 Feb; 1853(2):453-69. PubMed ID: 25486460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of lysine residues required for signal-induced ubiquitination and degradation of I kappa B-alpha in vivo.
    Rodriguez MS; Wright J; Thompson J; Thomas D; Baleux F; Virelizier JL; Hay RT; Arenzana-Seisdedos F
    Oncogene; 1996 Jun; 12(11):2425-35. PubMed ID: 8649784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nuclear ubiquitin ligases, NF-kappaB degradation, and the control of inflammation.
    Natoli G; Chiocca S
    Sci Signal; 2008 Jan; 1(1):pe1. PubMed ID: 18270169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo and in vitro recruitment of an IkappaBalpha-ubiquitin ligase to IkappaBalpha phosphorylated by IKK, leading to ubiquitination.
    Suzuki H; Chiba T; Kobayashi M; Takeuchi M; Furuichi K; Tanaka K
    Biochem Biophys Res Commun; 1999 Mar; 256(1):121-6. PubMed ID: 10066434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ubiquitin-dependent degradation of IkappaBalpha is mediated by a ubiquitin ligase Skp1/Cul 1/F-box protein FWD1.
    Hatakeyama S; Kitagawa M; Nakayama K; Shirane M; Matsumoto M; Hattori K; Higashi H; Nakano H; Okumura K; Onoé K; Good RA; Nakayama K
    Proc Natl Acad Sci U S A; 1999 Mar; 96(7):3859-63. PubMed ID: 10097128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of the receptor component of the IkappaBalpha-ubiquitin ligase.
    Yaron A; Hatzubai A; Davis M; Lavon I; Amit S; Manning AM; Andersen JS; Mann M; Mercurio F; Ben-Neriah Y
    Nature; 1998 Dec; 396(6711):590-4. PubMed ID: 9859996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arsenic inhibits NF-kappaB-mediated gene transcription by blocking IkappaB kinase activity and IkappaBalpha phosphorylation and degradation.
    Roussel RR; Barchowsky A
    Arch Biochem Biophys; 2000 May; 377(1):204-12. PubMed ID: 10775461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The ORF2 glycoprotein of hepatitis E virus inhibits cellular NF-κB activity by blocking ubiquitination mediated proteasomal degradation of IκBα in human hepatoma cells.
    Surjit M; Varshney B; Lal SK
    BMC Biochem; 2012 May; 13():7. PubMed ID: 22590978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity.
    Karin M; Ben-Neriah Y
    Annu Rev Immunol; 2000; 18():621-63. PubMed ID: 10837071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.