These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 26476465)

  • 1. Numerical comparison of acoustic wedge models, with application to ultrasonic telemetry.
    Lü B; Darmon M; Fradkin L; Potel C
    Ultrasonics; 2016 Feb; 65():5-9. PubMed ID: 26476465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A system model for ultrasonic NDT based on the Physical Theory of Diffraction (PTD).
    Darmon M; Dorval V; Kamta Djakou A; Fradkin L; Chatillon S
    Ultrasonics; 2016 Jan; 64():115-27. PubMed ID: 26323548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Uniform geometrical Theory of Diffraction for elastodynamics: Plane wave scattering from a half-plane.
    Djakou AK; Darmon M; Fradkin L; Potel C
    J Acoust Soc Am; 2015 Nov; 138(5):3272-81. PubMed ID: 26627800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustic radiation force of high-order Bessel beam standing wave tweezers on a rigid sphere.
    Mitri FG
    Ultrasonics; 2009 Dec; 49(8):794-8. PubMed ID: 19692103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of a monochromatic ultrasonic beam with a finite length defect at the interface between two anisotropic layers: Kirchhoff approximation and Fourier representation.
    Vacossin B; Potel C; Gatignol P; de Belleval JF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Oct; 56(10):2251-67. PubMed ID: 19942512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A refinement of the Kirchhoff approximation to the scattered elastic fields.
    Zernov V; Fradkin L; Darmon M
    Ultrasonics; 2012 Sep; 52(7):830-5. PubMed ID: 22633555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of a nondiffracting high-order Bessel (vortex) beam of fractional type alpha and integer order m with a rigid sphere: linear acoustic scattering and net instantaneous axial force.
    Mitri FG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):395-404. PubMed ID: 20178905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of a high-order Bessel beam with a submerged spherical ultrasound contrast agent shell - Scattering theory.
    Mitri FG
    Ultrasonics; 2010 Mar; 50(3):387-96. PubMed ID: 19833370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boundary perturbation methods for high-frequency acoustic scattering: shallow periodic gratings.
    Nicholls DP; Reitich F
    J Acoust Soc Am; 2008 May; 123(5):2531-41. PubMed ID: 18529172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Producing acoustic 'Frozen Waves': simulated experiments with diffraction/attenuation resistant beams in lossy media.
    Prego-Borges JL; Zamboni-Rached M; Recami E; Costa ET
    Ultrasonics; 2014 Aug; 54(6):1620-30. PubMed ID: 24709072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The high-frequency description of scatter of a plane compressional wave by an elliptic crack.
    Fradkin LJ; Stacey R
    Ultrasonics; 2010 Apr; 50(4-5):529-38. PubMed ID: 19954806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uniform theory of diffraction (UTD)-based solution for sound diffraction caused by an array of obstacles.
    Rodríguez JV; Pascual-García J; Martínez-Inglés MT; Molina-Garcia-Pardo JM; Juan-Llácer L
    J Acoust Soc Am; 2017 Aug; 142(2):902. PubMed ID: 28863562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validity of the Kirchhoff approximation for the scattering of electromagnetic waves from dielectric, doubly periodic surfaces.
    Franco M; Barber M; Maas M; Bruno O; Grings F; Calzetta E
    J Opt Soc Am A Opt Image Sci Vis; 2017 Dec; 34(12):2266-2277. PubMed ID: 29240104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurements and modeling of acoustic scattering from partially and completely buried spherical shells.
    Tesei A; Maguer A; Fox WL; Lim R; Schmidt H
    J Acoust Soc Am; 2002 Nov; 112(5 Pt 1):1817-30. PubMed ID: 12430795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase matrix and cross sections for single scattering by circular cylinders: a comparison of ray optics and wave theory.
    Takano Y; Tanaka M
    Appl Opt; 1980 Aug; 19(16):2781-800. PubMed ID: 20234508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acoustic shock wave propagation in a heterogeneous medium: a numerical simulation beyond the parabolic approximation.
    Dagrau F; Rénier M; Marchiano R; Coulouvrat F
    J Acoust Soc Am; 2011 Jul; 130(1):20-32. PubMed ID: 21786874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative simulation of ultrasonic time of flight diffraction technique in 2D geometries using Huygens-Fresnel diffraction model: theory and experimental comparison.
    Kolkoori S; Chitti Venkata K; Balasubramaniam K
    Ultrasonics; 2015 Jan; 55():33-41. PubMed ID: 25200698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Network representations of angular regions for electromagnetic scattering.
    Daniele VG; Lombardi G; Zich RS
    PLoS One; 2017; 12(8):e0182763. PubMed ID: 28817573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro and in vivo real-time imaging with ultrasonic limited diffraction beams.
    Lu JY; Song TK; Kinnick RR; Greenleaf JF
    IEEE Trans Med Imaging; 1993; 12(4):819-29. PubMed ID: 18218478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. UTD solution for the diffraction by an anisotropic impedance wedge at arbitrary skew incidence: numerical matching method.
    Li J; He S; Yu D; Deng F; Yin H; Zhu G
    Opt Express; 2011 Nov; 19(24):23751-69. PubMed ID: 22109401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.