These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 26476642)
1. Polysialic acid biosynthesis and production in Escherichia coli: current state and perspectives. Lin BX; Qiao Y; Shi B; Tao Y Appl Microbiol Biotechnol; 2016 Jan; 100(1):1-8. PubMed ID: 26476642 [TBL] [Abstract][Full Text] [Related]
2. Enhanced production of polysialic acid by metabolic engineering of Escherichia coli. Chen F; Tao Y; Jin C; Xu Y; Lin BX Appl Microbiol Biotechnol; 2015 Mar; 99(6):2603-11. PubMed ID: 25620366 [TBL] [Abstract][Full Text] [Related]
3. Comparison of polysialic acid production in Escherichia coli K1 during batch cultivation and fed-batch cultivation applying two different control strategies. Chen R; John J; Rode B; Hitzmann B; Gerardy-Schahn R; Kasper C; Scheper T J Biotechnol; 2011 Jul; 154(4):222-9. PubMed ID: 21530596 [TBL] [Abstract][Full Text] [Related]
4. Bioproduction, purification, and application of polysialic acid. Wu J; Zhan X; Liu L; Xia X Appl Microbiol Biotechnol; 2018 Nov; 102(22):9403-9409. PubMed ID: 30244279 [TBL] [Abstract][Full Text] [Related]
5. Large-scale production and homogenous purification of long chain polysialic acids from E. coli K1. Rode B; Endres C; Ran C; Stahl F; Beutel S; Kasper C; Galuska S; Geyer R; Mühlenhoff M; Gerardy-Schahn R; Scheper T J Biotechnol; 2008 Jun; 135(2):202-9. PubMed ID: 18482777 [TBL] [Abstract][Full Text] [Related]
6. Metabolic engineering of Escherichia coli for biotechnological production of high-value organic acids and alcohols. Yu C; Cao Y; Zou H; Xian M Appl Microbiol Biotechnol; 2011 Feb; 89(3):573-83. PubMed ID: 21052988 [TBL] [Abstract][Full Text] [Related]
7. Metabolic engineering of Escherichia coli for the production of fumaric acid. Song CW; Kim DI; Choi S; Jang JW; Lee SY Biotechnol Bioeng; 2013 Jul; 110(7):2025-34. PubMed ID: 23436277 [TBL] [Abstract][Full Text] [Related]
8. Efficient production of Pseudoionone with multipathway engineering in Escherichia coli. Jiang R; Chen X; Lian J; Huang L; Cai J; Xu Z J Appl Microbiol; 2019 Jun; 126(6):1751-1760. PubMed ID: 30920693 [TBL] [Abstract][Full Text] [Related]
9. An integrated biotechnology platform for developing sustainable chemical processes. Barton NR; Burgard AP; Burk MJ; Crater JS; Osterhout RE; Pharkya P; Steer BA; Sun J; Trawick JD; Van Dien SJ; Yang TH; Yim H J Ind Microbiol Biotechnol; 2015 Mar; 42(3):349-60. PubMed ID: 25416472 [TBL] [Abstract][Full Text] [Related]
10. Combining rational metabolic engineering and flux optimization strategies for efficient production of fumaric acid. Song CW; Lee SY Appl Microbiol Biotechnol; 2015 Oct; 99(20):8455-64. PubMed ID: 26194559 [TBL] [Abstract][Full Text] [Related]
11. Physiological characterization and quantitative proteomic analyses of metabolically engineered E. coli K4 strains with improved pathways for capsular polysaccharide biosynthesis. Cimini D; Russo R; D'Ambrosio S; Dello Iacono I; Rega C; Carlino E; Argenzio O; Russo L; D'Abrosca B; Chambery A; Schiraldi C Biotechnol Bioeng; 2018 Jul; 115(7):1801-1814. PubMed ID: 29578572 [TBL] [Abstract][Full Text] [Related]
12. [Progress in engineering Escherichia coli for production of high-value added organic acids and alcohols]. Wang J; Liu W; Xu X; Zhang H; Xian M Sheng Wu Gong Cheng Xue Bao; 2013 Oct; 29(10):1363-73. PubMed ID: 24432652 [TBL] [Abstract][Full Text] [Related]
13. Gene products required for de novo synthesis of polysialic acid in Escherichia coli K1. Andreishcheva EN; Vann WF J Bacteriol; 2006 Mar; 188(5):1786-97. PubMed ID: 16484189 [TBL] [Abstract][Full Text] [Related]
14. A new polysialic acid production process based on dual-stage pH control and fed-batch fermentation for higher yield and resulting high molecular weight product. Zheng ZY; Wang SZ; Li GS; Zhan XB; Lin CC; Wu JR; Zhu L Appl Microbiol Biotechnol; 2013 Mar; 97(6):2405-12. PubMed ID: 23090056 [TBL] [Abstract][Full Text] [Related]
15. Enhanced production of N-acetyl-D-neuraminic acid by multi-approach whole-cell biocatalyst. Lin BX; Zhang ZJ; Liu WF; Dong ZY; Tao Y Appl Microbiol Biotechnol; 2013 Jun; 97(11):4775-84. PubMed ID: 23420269 [TBL] [Abstract][Full Text] [Related]
16. Optimization of bioprocess productivity based on metabolic-genetic network models with bilevel dynamic programming. Jabarivelisdeh B; Waldherr S Biotechnol Bioeng; 2018 Jul; 115(7):1829-1841. PubMed ID: 29578608 [TBL] [Abstract][Full Text] [Related]
17. Escherichia coli for biofuel production: bridging the gap from promise to practice. Huffer S; Roche CM; Blanch HW; Clark DS Trends Biotechnol; 2012 Oct; 30(10):538-45. PubMed ID: 22921756 [TBL] [Abstract][Full Text] [Related]
18. Microbial metabolic engineering for L-threonine production. Dong X; Quinn PJ; Wang X Subcell Biochem; 2012; 64():283-302. PubMed ID: 23080256 [TBL] [Abstract][Full Text] [Related]
19. Recent Progress in Metabolic Engineering of Ye DY; Moon JH; Jung GY J Agric Food Chem; 2023 Jul; 71(29):10916-10931. PubMed ID: 37458388 [TBL] [Abstract][Full Text] [Related]