These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 26477311)
1. Targeting tumor-stroma crosstalk: the example of the NT157 inhibitor. Rampias T; Favicchio R; Stebbing J; Giamas G Oncogene; 2016 May; 35(20):2562-4. PubMed ID: 26477311 [TBL] [Abstract][Full Text] [Related]
2. Targeting melanoma with NT157 by blocking Stat3 and IGF1R signaling. Flashner-Abramson E; Klein S; Mullin G; Shoshan E; Song R; Shir A; Langut Y; Bar-Eli M; Reuveni H; Levitzki A Oncogene; 2016 May; 35(20):2675-80. PubMed ID: 26119932 [TBL] [Abstract][Full Text] [Related]
3. NT157, an IGF1R-IRS1/2 inhibitor, exhibits antineoplastic effects in pre-clinical models of chronic myeloid leukemia. Scopim-Ribeiro R; Machado-Neto JA; Eide CA; Coelho-Silva JL; Fenerich BA; Fernandes JC; Scheucher PS; Savage Stevens SL; de Melo Campos P; Olalla Saad ST; de Carvalho Palma L; de Figueiredo-Pontes LL; Simões BP; Rego EM; Tognon CE; Druker BJ; Traina F Invest New Drugs; 2021 Jun; 39(3):736-746. PubMed ID: 33403501 [TBL] [Abstract][Full Text] [Related]
4. NT157 exerts antineoplastic activity by targeting JNK and AXL signaling in lung cancer cells. de Miranda LBL; Lima K; Coelho-Silva JL; Traina F; Kobayashi SS; Machado-Neto JA Sci Rep; 2022 Oct; 12(1):17092. PubMed ID: 36224313 [TBL] [Abstract][Full Text] [Related]
5. IGF1R/IRS1 targeting has cytotoxic activity and inhibits PI3K/AKT/mTOR and MAPK signaling in acute lymphoblastic leukemia cells. Rodrigues Alves APN; Fernandes JC; Fenerich BA; Coelho-Silva JL; Scheucher PS; Simões BP; Rego EM; Ridley AJ; Machado-Neto JA; Traina F Cancer Lett; 2019 Aug; 456():59-68. PubMed ID: 31042587 [TBL] [Abstract][Full Text] [Related]
6. Insulin Receptor Substrate Suppression by the Tyrphostin NT157 Inhibits Responses to Insulin-Like Growth Factor-I and Insulin in Breast Cancer Cells. Yang Y; Chan JY; Temiz NA; Yee D Horm Cancer; 2018 Dec; 9(6):371-382. PubMed ID: 30229539 [TBL] [Abstract][Full Text] [Related]
7. NT157 Inhibits HCC Migration via Downregulating the STAT3/Jab1 Signaling Pathway. Yu S; Wang Y; Lv K; Hou J; Li W; Wang X; Guo H; Wang W Technol Cancer Res Treat; 2021; 20():15330338211027916. PubMed ID: 34238066 [TBL] [Abstract][Full Text] [Related]
8. Impact of the Anticancer Drug NT157 on Tyrosine Kinase Signaling Networks. Su SP; Flashner-Abramson E; Klein S; Gal M; Lee RS; Wu J; Levitzki A; Daly RJ Mol Cancer Ther; 2018 May; 17(5):931-942. PubMed ID: 29440449 [TBL] [Abstract][Full Text] [Related]
9. Targeting the tumor microenvironment: from understanding pathways to effective clinical trials. Fang H; Declerck YA Cancer Res; 2013 Aug; 73(16):4965-77. PubMed ID: 23913938 [TBL] [Abstract][Full Text] [Related]
10. Targeting colorectal cancer via its microenvironment by inhibiting IGF-1 receptor-insulin receptor substrate and STAT3 signaling. Sanchez-Lopez E; Flashner-Abramson E; Shalapour S; Zhong Z; Taniguchi K; Levitzki A; Karin M Oncogene; 2016 May; 35(20):2634-44. PubMed ID: 26364612 [TBL] [Abstract][Full Text] [Related]
11. Taking a Full Snapshot of Cancer Biology: Deciphering the Tumor Microenvironment for Effective Cancer Therapy in the Oncology Clinic. Dzobo K OMICS; 2020 Apr; 24(4):175-179. PubMed ID: 32176591 [TBL] [Abstract][Full Text] [Related]
12. Tumor stroma as targets for cancer therapy. Zhang J; Liu J Pharmacol Ther; 2013 Feb; 137(2):200-15. PubMed ID: 23064233 [TBL] [Abstract][Full Text] [Related]
13. Natural Compounds as Metabolic Modulators of the Tumor Microenvironment. Dias AS; Helguero L; Almeida CR; Duarte IF Molecules; 2021 Jun; 26(12):. PubMed ID: 34201298 [TBL] [Abstract][Full Text] [Related]
14. Targeting the cancer-stroma interaction: a potential approach for pancreatic cancer treatment. Li X; Ma Q; Xu Q; Duan W; Lei J; Wu E Curr Pharm Des; 2012; 18(17):2404-15. PubMed ID: 22372501 [TBL] [Abstract][Full Text] [Related]
15. Small molecules modulating tumor-stromal cell interactions: new candidates for anti-tumor drugs. Kawada M J Antibiot (Tokyo); 2016 Jun; 69(6):411-4. PubMed ID: 27005556 [TBL] [Abstract][Full Text] [Related]
16. Tumor-stromal interactions in lung cancer: novel candidate targets for therapeutic intervention. El-Nikhely N; Larzabal L; Seeger W; Calvo A; Savai R Expert Opin Investig Drugs; 2012 Aug; 21(8):1107-22. PubMed ID: 22667993 [TBL] [Abstract][Full Text] [Related]
17. Complex interplay between tumor microenvironment and cancer therapy. Shen M; Kang Y Front Med; 2018 Aug; 12(4):426-439. PubMed ID: 30097962 [TBL] [Abstract][Full Text] [Related]
18. Strategies of targeting pathological stroma for enhanced antitumor therapies. Zhu Y; Yu F; Tan Y; Yuan H; Hu F Pharmacol Res; 2019 Oct; 148():104401. PubMed ID: 31422113 [TBL] [Abstract][Full Text] [Related]
19. Impact of tumor microenvironment composition on therapeutic responses and clinical outcomes in cancer. Anari F; Ramamurthy C; Zibelman M Future Oncol; 2018 Jun; 14(14):1409-1421. PubMed ID: 29848096 [TBL] [Abstract][Full Text] [Related]
20. The emerging roles of exosomes in anti-cancer drug resistance and tumor progression: An insight towards tumor-microenvironment interaction. Jena BC; Mandal M Biochim Biophys Acta Rev Cancer; 2021 Jan; 1875(1):188488. PubMed ID: 33271308 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]