These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 2647738)

  • 1. Proteolytic modification of Escherichia coli alkaline phosphatase.
    Tyler-Cross R; Roberts CH; Chlebowski JF
    J Biol Chem; 1989 Mar; 264(8):4523-8. PubMed ID: 2647738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hybrid Escherichia coli alkaline phosphatase formed on proteolysis.
    Olafsdottir S; Chlebowski JF
    J Biol Chem; 1989 Mar; 264(8):4529-35. PubMed ID: 2494174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trypsin-modified alkaline phosphatase. Formation of apoenzyme monomer and hybrid dimer.
    Roberts CH; Chlebowski JF
    J Biol Chem; 1985 Jun; 260(12):7557-61. PubMed ID: 3889000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-function analysis of plasma cholesteryl ester transfer protein by protease digestion and expression of cDNA fragments in Escherichia coli.
    Hesler CB; Brown ML; Feuer DS; Marcel YL; Milne RW; Tall AR
    J Biol Chem; 1989 Jul; 264(19):11317-25. PubMed ID: 2472395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trypsin modification of Escherichia coli alkaline phosphatase.
    Roberts CH; Chlebowski JF
    J Biol Chem; 1984 Jan; 259(2):729-33. PubMed ID: 6363407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hysteretic behaviour of citrate synthase. Site-directed limited proteolysis.
    Lill U; Schreil A; Henschen A; Eggerer H
    Eur J Biochem; 1984 Aug; 143(1):205-12. PubMed ID: 6381053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The unique sites in SulA protein preferentially cleaved by ATP-dependent Lon protease from Escherichia coli.
    Nishii W; Maruyama T; Matsuoka R; Muramatsu T; Takahashi K
    Eur J Biochem; 2002 Jan; 269(2):451-7. PubMed ID: 11856303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystals of a trypsin-modified alkaline phosphatase. Preliminary crystallographic characterization.
    Olafsdottir S; Wright C; Wright HT; Chlebowski JF
    J Biol Chem; 1988 Jul; 263(20):10002-4. PubMed ID: 3290205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Essential arginyl residues in Escherichia coli alkaline phosphatase.
    Daemen FJ; Riordan JF
    Biochemistry; 1974 Jul; 13(14):2865-71. PubMed ID: 4601722
    [No Abstract]   [Full Text] [Related]  

  • 10. Rearrangement of terminal amino acid residues in peptides by protease-catalyzed intramolecular transpeptidation.
    Fodor S; Zhang Z
    Anal Biochem; 2006 Sep; 356(2):282-90. PubMed ID: 16859627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of linker regions and domain borders of the transcription activator protein NtrC from Escherichia coli by limited proteolysis, in-gel digestion, and mass spectrometry.
    Bantscheff M; Weiss V; Glocker MO
    Biochemistry; 1999 Aug; 38(34):11012-20. PubMed ID: 10460156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation of abnormal proteins in Escherichia coli. Differential proteolysis in vitro of E. coli alkaline phosphatase cyanogen-bromide-cleavage products.
    Kemshead JT; Hipkiss AR
    Eur J Biochem; 1976 Dec; 71(1):185-92. PubMed ID: 795661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination by cadmium-113 nuclear magnetic resonance of the structural basis for metal ion dependent anticooperativity in alkaline phosphatase.
    Otvos JD; Armitage IM
    Biochemistry; 1980 Aug; 19(17):4031-43. PubMed ID: 6996715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of the alpha subunit of F1-ATPase probed by limited proteolysis.
    Tozawa K; Miyauchi M; Yoshida M
    J Biol Chem; 1993 Sep; 268(25):19044-54. PubMed ID: 8360191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bovine inositol monophosphatase: proteolysis and structural studies.
    Greasley PJ; Gore MG; Rees-Milton KJ; Ragan CI
    FEBS Lett; 1993 Mar; 319(1-2):49-53. PubMed ID: 8384127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of intra-domain and inter-domain interactions of glutathione transferase P1-1 by limited chymotryptic cleavage.
    Martini F; Aceto A; Sacchetta P; Bucciarelli T; Dragani B; Di Ilio C
    Eur J Biochem; 1993 Dec; 218(3):845-51. PubMed ID: 8281936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification and characterization of a heterodimeric 23/20-kDa proteolytic fragment of bacterial glutathione transferase B1-1.
    Aceto A; Dragani B; Allocati N; Masulli M; Petruzzelli R; Di Ilio C
    Arch Biochem Biophys; 1996 Apr; 328(2):302-8. PubMed ID: 8645008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The complete amino acid sequence and identification of the active-site arginine peptide of Escherichia coli 2-keto-4-hydroxyglutarate aldolase.
    Vlahos CJ; Dekker EE
    J Biol Chem; 1988 Aug; 263(24):11683-91. PubMed ID: 3136164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ATP-dependent degradation of CcdA by Lon protease. Effects of secondary structure and heterologous subunit interactions.
    Van Melderen L; Thi MH; Lecchi P; Gottesman S; Couturier M; Maurizi MR
    J Biol Chem; 1996 Nov; 271(44):27730-8. PubMed ID: 8910366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Covalent modification of substrate-binding sites of Escherichia coli ADP-glucose synthetase. Isolation and structural characterization of 8-azido-ADP-glucose-incorporated peptides.
    Lee YM; Preiss J
    J Biol Chem; 1986 Jan; 261(3):1058-64. PubMed ID: 3003050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.