BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 26477408)

  • 1. Microfluidic deformability analysis of the red cell storage lesion.
    Matthews K; Myrand-Lapierre ME; Ang RR; Duffy SP; Scott MD; Ma H
    J Biomech; 2015 Nov; 48(15):4065-4072. PubMed ID: 26477408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inter-donor variability in deformability of red blood cells in blood units.
    Barshtein G; Rasmusen TL; Zelig O; Arbell D; Yedgar S
    Transfus Med; 2020 Dec; 30(6):492-496. PubMed ID: 33015934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a flow standard to enable highly reproducible measurements of deformability of stored red blood cells in a microfluidic device.
    Robidoux J; Laforce-Lavoie A; Charette SJ; Shevkoplyas SS; Yoshida T; Lewin A; Brouard D
    Transfusion; 2020 May; 60(5):1032-1041. PubMed ID: 32237236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deformability based sorting of stored red blood cells reveals donor-dependent aging curves.
    Islamzada E; Matthews K; Guo Q; Santoso AT; Duffy SP; Scott MD; Ma H
    Lab Chip; 2020 Jan; 20(2):226-235. PubMed ID: 31796943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Usefulness of frozen-thawed-deglycerolized red blood cells as quality control materials for red blood cell deformability test].
    Kim YK; Won DI; Kim HO; Shin S; Suh JS
    Korean J Lab Med; 2010 Dec; 30(6):697-701. PubMed ID: 21157158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation of red blood cell deformability during cold storage in blood bags.
    Islamzada E; Matthews K; Lamoureux ES; Duffy SP; Scott MD; Ma H
    EJHaem; 2022 Feb; 3(1):63-71. PubMed ID: 35846223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic analysis of red blood cell deformability.
    Guo Q; Duffy SP; Matthews K; Santoso AT; Scott MD; Ma H
    J Biomech; 2014 Jun; 47(8):1767-76. PubMed ID: 24767871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of biochemical and functional alterations of rat and human erythrocytes stored in CPDA-1 for 29 days: implications for animal models of transfusion.
    d'Almeida MS; Jagger J; Duggan M; White M; Ellis C; Chin-Yee IH
    Transfus Med; 2000 Dec; 10(4):291-303. PubMed ID: 11123813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic analysis of cellular deformability of normal and oxidatively damaged red blood cells.
    Kwan JM; Guo Q; Kyluik-Price DL; Ma H; Scott MD
    Am J Hematol; 2013 Aug; 88(8):682-9. PubMed ID: 23674388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of red blood cell deformability change during blood storage.
    Zheng Y; Chen J; Cui T; Shehata N; Wang C; Sun Y
    Lab Chip; 2014 Feb; 14(3):577-83. PubMed ID: 24296983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of blood bank storage on the rheological properties of male and female donor red blood cells.
    Daly A; Raval JS; Waters JH; Yazer MH; Kameneva MV
    Clin Hemorheol Microcirc; 2014; 56(4):337-45. PubMed ID: 23818106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing red blood cell deformability from microscopy images using deep learning.
    Lamoureux ES; Islamzada E; Wiens MVJ; Matthews K; Duffy SP; Ma H
    Lab Chip; 2021 Dec; 22(1):26-39. PubMed ID: 34874395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decrease in red blood cell deformability is associated with a reduction in RBC-NOS activation during storage.
    Grau M; Friederichs P; Krehan S; Koliamitra C; Suhr F; Bloch W
    Clin Hemorheol Microcirc; 2015 Jul; 60(2):215-29. PubMed ID: 24928922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated automated particle tracking microfluidic enables high-throughput cell deformability cytometry for red cell disorders.
    Guruprasad P; Mannino RG; Caruso C; Zhang H; Josephson CD; Roback JD; Lam WA
    Am J Hematol; 2019 Feb; 94(2):189-199. PubMed ID: 30417938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decreased erythrocyte deformability after transfusion and the effects of erythrocyte storage duration.
    Frank SM; Abazyan B; Ono M; Hogue CW; Cohen DB; Berkowitz DE; Ness PM; Barodka VM
    Anesth Analg; 2013 May; 116(5):975-981. PubMed ID: 23449853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unit-to-unit variability in the deformability of red blood cells.
    Barshtein G; Gural A; Zelig O; Arbell D; Yedgar S
    Transfus Apher Sci; 2020 Oct; 59(5):102876. PubMed ID: 32690367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transfusion of stored red blood cells adhere in the rat microvasculature.
    Chin-Yee IH; Gray-Statchuk L; Milkovich S; Ellis CG
    Transfusion; 2009 Nov; 49(11):2304-10. PubMed ID: 19624601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blood unit segments accurately represent the biophysical properties of red blood cells in blood bags but not hemolysis.
    Islamzada E; Matthews K; Lamoureux E; Duffy SP; Scott MD; Ma H
    Transfusion; 2022 Feb; 62(2):448-456. PubMed ID: 34877683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cryopreservation of red blood cells: Effect on rheologic properties and associated metabolic and nitric oxide related parameters.
    Bizjak DA; Jungen P; Bloch W; Grau M
    Cryobiology; 2018 Oct; 84():59-68. PubMed ID: 30080995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidative stress and rheologic properties of stored red blood cells before and after transfusion to surgical patients.
    Nagababu E; Scott AV; Johnson DJ; Dwyer IM; Lipsitz JA; Barodka VM; Berkowitz DE; Frank SM
    Transfusion; 2016 May; 56(5):1101-11. PubMed ID: 26825863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.