These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 26477433)
1. Protein/polysaccharide interactions and their impact on haze formation in white wines. Dufrechou M; Doco T; Poncet-Legrand C; Sauvage FX; Vernhet A J Agric Food Chem; 2015 Nov; 63(45):10042-53. PubMed ID: 26477433 [TBL] [Abstract][Full Text] [Related]
2. Stability of white wine proteins: combined effect of pH, ionic strength, and temperature on their aggregation. Dufrechou M; Poncet-Legrand C; Sauvage FX; Vernhet A J Agric Food Chem; 2012 Feb; 60(5):1308-19. PubMed ID: 22224874 [TBL] [Abstract][Full Text] [Related]
3. Influence of polysaccharides on wine protein aggregation. Jaeckels N; Meier M; Dietrich H; Will F; Decker H; Fronk P Food Chem; 2016 Jun; 200():38-45. PubMed ID: 26830558 [TBL] [Abstract][Full Text] [Related]
4. Roles of proteins, polysaccharides, and phenolics in haze formation in white wine via reconstitution experiments. Gazzola D; Van Sluyter SC; Curioni A; Waters EJ; Marangon M J Agric Food Chem; 2012 Oct; 60(42):10666-73. PubMed ID: 22998638 [TBL] [Abstract][Full Text] [Related]
5. Polyphenol-Protein-Polysaccharide Interactions in the Presence of Carboxymethyl Cellulose (CMC) in Wine-Like Model Systems. Sommer S; Weber F; Harbertson JF J Agric Food Chem; 2019 Jul; 67(26):7428-7434. PubMed ID: 31187991 [TBL] [Abstract][Full Text] [Related]
6. Roles of grape thaumatin-like protein and chitinase in white wine haze formation. Marangon M; Van Sluyter SC; Neilson KA; Chan C; Haynes PA; Waters EJ; Falconer RJ J Agric Food Chem; 2011 Jan; 59(2):733-40. PubMed ID: 21189017 [TBL] [Abstract][Full Text] [Related]
7. Effects of ionic strength and sulfate upon thermal aggregation of grape chitinases and thaumatin-like proteins in a model system. Marangon M; Sauvage FX; Waters EJ; Vernhet A J Agric Food Chem; 2011 Mar; 59(6):2652-62. PubMed ID: 21361294 [TBL] [Abstract][Full Text] [Related]
8. Polysaccharide composition of Monastrell red wines from four different Spanish terroirs: effect of wine-making techniques. Apolinar-Valiente R; Williams P; Romero-Cascales I; Gómez-Plaza E; López-Roca JM; Ros-García JM; Doco T J Agric Food Chem; 2013 Mar; 61(10):2538-47. PubMed ID: 23425547 [TBL] [Abstract][Full Text] [Related]
9. Wine protein haze: mechanisms of formation and advances in prevention. Van Sluyter SC; McRae JM; Falconer RJ; Smith PA; Bacic A; Waters EJ; Marangon M J Agric Food Chem; 2015 Apr; 63(16):4020-30. PubMed ID: 25847216 [TBL] [Abstract][Full Text] [Related]
10. Pectolytic enzyme reduces the concentration of colloidal particles in wine due to changes in polysaccharide structure and aggregation properties. Kassara S; Li S; Smith P; Blando F; Bindon K Int J Biol Macromol; 2019 Nov; 140():546-555. PubMed ID: 31404601 [TBL] [Abstract][Full Text] [Related]
11. Effects of high hydrostatic pressure (HHP) on the protein structure and thermal stability of Sauvignon blanc wine. Tabilo-Munizaga G; Gordon TA; Villalobos-Carvajal R; Moreno-Osorio L; Salazar FN; Pérez-Won M; Acuña S Food Chem; 2014 Jul; 155():214-20. PubMed ID: 24594177 [TBL] [Abstract][Full Text] [Related]
12. Protein aggregation in white wines: influence of the temperature on aggregation kinetics and mechanisms. Dufrechou M; Sauvage FX; Bach B; Vernhet A J Agric Food Chem; 2010 Sep; 58(18):10209-18. PubMed ID: 20799706 [TBL] [Abstract][Full Text] [Related]
13. Effect of flash release and pectinolytic enzyme treatments on wine polysaccharide composition. Doco T; Williams P; Cheynier V J Agric Food Chem; 2007 Aug; 55(16):6643-9. PubMed ID: 17629303 [TBL] [Abstract][Full Text] [Related]
14. Mannoproteins, arabinogalactan protein, rhamnogalacturonan II and their pairwise combinations regulating wine astringency induced by the interaction of proanthocyanidins and proteins. Lei X; Wang S; Zhao P; Wang X Int J Biol Macromol; 2023 Jan; 224():950-957. PubMed ID: 36306908 [TBL] [Abstract][Full Text] [Related]
15. High-proline proteins in experimental hazy white wine produced from partially botrytized grapes. Perutka Z; Šufeisl M; Strnad M; Šebela M Biotechnol Appl Biochem; 2019 May; 66(3):398-411. PubMed ID: 30715757 [TBL] [Abstract][Full Text] [Related]
16. Heating and reduction affect the reaction with tannins of wine protein fractions differing in hydrophobicity. Marangon M; Vincenzi S; Lucchetta M; Curioni A Anal Chim Acta; 2010 Feb; 660(1-2):110-8. PubMed ID: 20103151 [TBL] [Abstract][Full Text] [Related]
17. Influence of wine pectic polysaccharides on the interactions between condensed tannins and salivary proteins. Carvalho E; Mateus N; Plet B; Pianet I; Dufourc E; De Freitas V J Agric Food Chem; 2006 Nov; 54(23):8936-44. PubMed ID: 17090144 [TBL] [Abstract][Full Text] [Related]
18. Polysaccharide profile and content during the vinification and aging of Tempranillo red wines. Guadalupe Z; Ayestarán B J Agric Food Chem; 2007 Dec; 55(26):10720-8. PubMed ID: 18001031 [TBL] [Abstract][Full Text] [Related]
19. Degradation of white wine haze proteins by Aspergillopepsin I and II during juice flash pasteurization. Marangon M; Van Sluyter SC; Robinson EM; Muhlack RA; Holt HE; Haynes PA; Godden PW; Smith PA; Waters EJ Food Chem; 2012 Dec; 135(3):1157-65. PubMed ID: 22953838 [TBL] [Abstract][Full Text] [Related]
20. Wine Thermosensitive Proteins Adsorb First and Better on Bentonite during Fining: Practical Implications and Proposition of Alternative Heat Tests. Vernhet A; Meistermann E; Cottereau P; Charrier F; Chemardin P; Poncet-Legrand C J Agric Food Chem; 2020 Nov; 68(47):13450-13458. PubMed ID: 32142274 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]