These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 26477473)
1. Superior Catalytic Activity of Electrochemically Reduced Graphene Oxide Supported Iron Phthalocyanines toward Oxygen Reduction Reaction. Liu D; Long YT ACS Appl Mater Interfaces; 2015 Nov; 7(43):24063-8. PubMed ID: 26477473 [TBL] [Abstract][Full Text] [Related]
2. Oxygen reduction reaction by electrochemically reduced graphene oxide. Bikkarolla SK; Cumpson P; Joseph P; Papakonstantinou P Faraday Discuss; 2014; 173():415-28. PubMed ID: 25467392 [TBL] [Abstract][Full Text] [Related]
3. Oxygen reduction reaction activity of an iron phthalocyanine/graphene oxide nanocomposite. Irisa K; Hatakeyama K; Yoshimoto S; Koinuma M; Ida S RSC Adv; 2021 Apr; 11(26):15927-15932. PubMed ID: 35481177 [TBL] [Abstract][Full Text] [Related]
4. Relevance of the Interaction between the M-Phthalocyanines and Carbon Nanotubes in the Electroactivity toward ORR. González-Gaitán C; Ruiz-Rosas R; Morallón E; Cazorla-Amorós D Langmuir; 2017 Oct; 33(43):11945-11955. PubMed ID: 28961400 [TBL] [Abstract][Full Text] [Related]
5. Iron phthalocyanine supported on amino-functionalized multi-walled carbon nanotube as an alternative cathodic oxygen catalyst in microbial fuel cells. Yuan Y; Zhao B; Jeon Y; Zhong S; Zhou S; Kim S Bioresour Technol; 2011 May; 102(10):5849-54. PubMed ID: 21435866 [TBL] [Abstract][Full Text] [Related]
6. Biaxially-Strained Phthalocyanine at Polyoxometalate@Carbon Nanotube Heterostructure Boosts Oxygen Reduction Catalysis. Zhu S; Ding L; Zhang X; Wang K; Wang X; Yang F; Han G Angew Chem Int Ed Engl; 2023 Oct; 62(42):e202309545. PubMed ID: 37650786 [TBL] [Abstract][Full Text] [Related]
7. Operando Characterization of Iron Phthalocyanine Deactivation during Oxygen Reduction Reaction Using Electrochemical Tip-Enhanced Raman Spectroscopy. Chen Z; Jiang S; Kang G; Nguyen D; Schatz GC; Van Duyne RP J Am Chem Soc; 2019 Oct; 141(39):15684-15692. PubMed ID: 31503482 [TBL] [Abstract][Full Text] [Related]
8. Iron phthalocyanine and nitrogen-doped graphene composite as a novel non-precious catalyst for the oxygen reduction reaction. Zhang C; Hao R; Yin H; Liu F; Hou Y Nanoscale; 2012 Dec; 4(23):7326-9. PubMed ID: 23086132 [TBL] [Abstract][Full Text] [Related]
9. Active site formation mechanism of carbon-based oxygen reduction catalysts derived from a hyperbranched iron phthalocyanine polymer. Hiraike Y; Saito M; Niwa H; Kobayashi M; Harada Y; Oshima M; Kim J; Nabae Y; Kakimoto MA Nanoscale Res Lett; 2015; 10():179. PubMed ID: 25918496 [TBL] [Abstract][Full Text] [Related]
10. Two-dimensional MoS Kwon IS; Kwak IH; Kim JY; Abbas HG; Debela TT; Seo J; Cho MK; Ahn JP; Park J; Kang HS Nanoscale; 2019 Aug; 11(30):14266-14275. PubMed ID: 31317997 [TBL] [Abstract][Full Text] [Related]
11. Heterojunction nanowires having high activity and stability for the reduction of oxygen: formation by self-assembly of iron phthalocyanine with single walled carbon nanotubes (FePc/SWNTs). Zhu J; Jia N; Yang L; Su D; Park J; Choi Y; Gong K J Colloid Interface Sci; 2014 Apr; 419():61-7. PubMed ID: 24491331 [TBL] [Abstract][Full Text] [Related]
13. In situ electrochemical synthesis of highly loaded zirconium nanoparticles decorated reduced graphene oxide for the selective determination of dopamine and paracetamol in presence of ascorbic acid. Ezhil Vilian AT; Rajkumar M; Chen SM Colloids Surf B Biointerfaces; 2014 Mar; 115():295-301. PubMed ID: 24384145 [TBL] [Abstract][Full Text] [Related]
14. Boosting Electrochemical Oxygen Reduction Performance of Iron Phthalocyanine through Axial Coordination Sphere Interaction. Zhang W; Meeus EJ; Wang L; Zhang LH; Yang S; de Bruin B; Reek JNH; Yu F ChemSusChem; 2022 Feb; 15(3):e202102379. PubMed ID: 34904388 [TBL] [Abstract][Full Text] [Related]
15. Sulfur-doped graphene as a potential alternative metal-free electrocatalyst and Pt-catalyst supporting material for oxygen reduction reaction. Park JE; Jang YJ; Kim YJ; Song MS; Yoon S; Kim DH; Kim SJ Phys Chem Chem Phys; 2014 Jan; 16(1):103-9. PubMed ID: 24220278 [TBL] [Abstract][Full Text] [Related]
16. Single-Molecule Imaging of Iron-Phthalocyanine-Catalyzed Oxygen Reduction Reaction by in Situ Scanning Tunneling Microscopy. Gu JY; Cai ZF; Wang D; Wan LJ ACS Nano; 2016 Sep; 10(9):8746-50. PubMed ID: 27508323 [TBL] [Abstract][Full Text] [Related]
17. Bimetallic Pt-Au nanocatalysts electrochemically deposited on graphene and their electrocatalytic characteristics towards oxygen reduction and methanol oxidation. Hu Y; Zhang H; Wu P; Zhang H; Zhou B; Cai C Phys Chem Chem Phys; 2011 Mar; 13(9):4083-94. PubMed ID: 21229152 [TBL] [Abstract][Full Text] [Related]
18. Electronic Structure Regulation of Iron Phthalocyanine Induced by Anchoring on Heteroatom-Doping Carbon Sphere for Efficient Oxygen Reduction Reaction and Al-Air Battery. Luo Y; Chen Y; Xue Y; Chen J; Wang G; Wang R; Yu M; Zhang J Small; 2022 Jan; 18(2):e2105594. PubMed ID: 34859583 [TBL] [Abstract][Full Text] [Related]
19. Heat treated carbon supported iron(ii)phthalocyanine oxygen reduction catalysts: elucidation of the structure-activity relationship using X-ray absorption spectroscopy. Miller HA; Bellini M; Oberhauser W; Deng X; Chen H; He Q; Passaponti M; Innocenti M; Yang R; Sun F; Jiang Z; Vizza F Phys Chem Chem Phys; 2016 Dec; 18(48):33142-33151. PubMed ID: 27892575 [TBL] [Abstract][Full Text] [Related]
20. Spinel CuCo2O4 nanoparticles supported on N-doped reduced graphene oxide: a highly active and stable hybrid electrocatalyst for the oxygen reduction reaction. Ning R; Tian J; Asiri AM; Qusti AH; Al-Youbi AO; Sun X Langmuir; 2013 Oct; 29(43):13146-51. PubMed ID: 24117208 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]