These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 26477672)

  • 1. Nature of flocculation and tactoid formation in montmorillonite: the role of pH.
    Segad M; Åkesson T; Cabane B; Jönsson B
    Phys Chem Chem Phys; 2015 Nov; 17(44):29608-15. PubMed ID: 26477672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactivity, swelling and aggregation of mixed-size silicate nanoplatelets.
    Segad M; Cabane B; Jönsson B
    Nanoscale; 2015 Oct; 7(39):16290-7. PubMed ID: 26376952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ca/Na montmorillonite: structure, forces and swelling properties.
    Segad M; Jönsson B; Akesson T; Cabane B
    Langmuir; 2010 Apr; 26(8):5782-90. PubMed ID: 20235552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flocculated Laponite-PEG/PEO dispersions with monovalent salt, a SAXS and simulation study.
    Thuresson A; Segad M; Turesson M; Skepö M
    J Colloid Interface Sci; 2016 Mar; 466():330-42. PubMed ID: 26748065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monte Carlo simulations of parallel charged platelets as an approach to tactoid formation in clay.
    Thuresson A; Ullner M; Åkesson T; Labbez C; Jönsson B
    Langmuir; 2013 Jul; 29(29):9216-23. PubMed ID: 23834598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of the relative permittivity on the tactoid formation in nanoplatelet systems. A combined computer simulation, SAXS, and osmotic pressure study.
    Jansson M; Thuresson A; Plivelic TS; Forsman J; Skepö M
    J Colloid Interface Sci; 2018 Mar; 513():575-584. PubMed ID: 29190569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of montmorillonite tactoid size on Na-Ca cation exchange reactions.
    Tournassat C; Bizi M; Braibant G; Crouzet C
    J Colloid Interface Sci; 2011 Dec; 364(2):443-54. PubMed ID: 21920529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aggregation of Plate-like Colloids Induced by Charged Polymer Chains: Organization at the Nanometer Scale Tuned by Polymer Charge Density.
    Sakhawoth Y; Michot L; Levitz P; Rollet AL; Sirieix-Plenet J; Merino DH; Malikova N
    Langmuir; 2019 Aug; 35(33):10937-10946. PubMed ID: 31318560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organisation of clay nanoplatelets in a polyelectrolyte-based hydrogel.
    Hotton C; Sirieix-Plénet J; Ducouret G; Bizien T; Chennevière A; Porcar L; Michot L; Malikova N
    J Colloid Interface Sci; 2021 Dec; 604():358-367. PubMed ID: 34273780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The gap between crystalline and osmotic swelling of Na-montmorillonite: a Monte Carlo study.
    Meleshyn A; Bunnenberg C
    J Chem Phys; 2005 Jan; 122(3):34705. PubMed ID: 15740215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monte Carlo and molecular dynamics simulations of methane in potassium montmorillonite clay hydrates at elevated pressures and temperatures.
    Titiloye JO; Skipper NT
    J Colloid Interface Sci; 2005 Feb; 282(2):422-7. PubMed ID: 15589548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonaqueous suspensions of laponite and montmorillonite.
    Leach ES; Hopkinson A; Franklin K; van Duijneveldt JS
    Langmuir; 2005 Apr; 21(9):3821-30. PubMed ID: 15835943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intercalation of cationic peptides within Laponite layered clay minerals in aqueous suspensions: The effect of stoichiometry and charge distance matching.
    Jansson M; Lenton S; Plivelic TS; Skepö M
    J Colloid Interface Sci; 2019 Dec; 557():767-776. PubMed ID: 31569056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and rheology of organoclay suspensions.
    King HE; Milner ST; Lin MY; Singh JP; Mason TG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 1):021403. PubMed ID: 17358338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methane aqueous fluids in montmorillonite clay interlayer under near-surface geological conditions: a grand canonical Monte Carlo and molecular dynamics simulation study.
    Rao Q; Leng Y
    J Phys Chem B; 2014 Sep; 118(37):10956-65. PubMed ID: 25167085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coagulation of Na-montmorillonite by inorganic cations at neutral pH. A combined transmission X-ray microscopy, small angle and wide angle X-ray scattering study.
    Michot LJ; Bihannic I; Thomas F; Lartiges BS; Waldvogel Y; Caillet C; Thieme J; Funari SS; Levitz P
    Langmuir; 2013 Mar; 29(10):3500-10. PubMed ID: 23421550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards understanding the microstructural and structural changes in natural hierarchical materials for energy recovery:
    Gadikota G; Zhang F; Allen AJ
    Fuel (Lond); 2017 May; 196():195-209. PubMed ID: 29674781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assembly of clay mineral platelets, tactoids, and aggregates: Effect of mineral structure and solution salinity.
    Dor M; Levi-Kalisman Y; Day-Stirrat RJ; Mishael Y; Emmanuel S
    J Colloid Interface Sci; 2020 Apr; 566():163-170. PubMed ID: 32004956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular simulation study of hydrated Na-rectorite.
    Zhou J; Boek ES; Zhu J; Lu X; Sprik M; He H
    Langmuir; 2015 Feb; 31(6):2008-13. PubMed ID: 25625308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rheology of polyaniline-dinonylnaphthalene disulfonic acid (DNNDSA) montmorillonite clay nanocomposites in the sol state: shear thinning versus pseudo-solid behavior.
    Garai A; Nandi AK
    J Nanosci Nanotechnol; 2008 Apr; 8(4):1842-51. PubMed ID: 18572585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.