These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 26477676)
1. Two-ply channels for faster wicking in paper-based microfluidic devices. Camplisson CK; Schilling KM; Pedrotti WL; Stone HA; Martinez AW Lab Chip; 2015 Dec; 15(23):4461-6. PubMed ID: 26477676 [TBL] [Abstract][Full Text] [Related]
2. Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique. Nilghaz A; Wicaksono DH; Gustiono D; Abdul Majid FA; Supriyanto E; Abdul Kadir MR Lab Chip; 2012 Jan; 12(1):209-18. PubMed ID: 22089026 [TBL] [Abstract][Full Text] [Related]
3. Microfluidic pressure in paper (μPiP): rapid prototyping and low-cost liquid handling for on-chip diagnostics. Islam MN; Yost JW; Gagnon ZR Analyst; 2022 Feb; 147(4):587-596. PubMed ID: 35037668 [TBL] [Abstract][Full Text] [Related]
4. Modifying Wicking Speeds in Paper-Based Microfluidic Devices by Laser-Etching. Kalish B; Tan MK; Tsutsui H Micromachines (Basel); 2020 Aug; 11(8):. PubMed ID: 32823829 [TBL] [Abstract][Full Text] [Related]
5. A portable pressure pump for microfluidic lab-on-a-chip systems using a porous polydimethylsiloxane (PDMS) sponge. Cha KJ; Kim DS Biomed Microdevices; 2011 Oct; 13(5):877-83. PubMed ID: 21698383 [TBL] [Abstract][Full Text] [Related]
6. Laser-etched grooves for rapid fluid delivery for a paper-based chemiresistive biosensor. Modha S; Shen Y; Chamouni H; Mulchandani A; Tsutsui H Biosens Bioelectron; 2021 May; 180():113090. PubMed ID: 33662845 [TBL] [Abstract][Full Text] [Related]
9. Toner and paper-based fabrication techniques for microfluidic applications. Coltro WK; de Jesus DP; da Silva JA; do Lago CL; Carrilho E Electrophoresis; 2010 Aug; 31(15):2487-98. PubMed ID: 20665911 [TBL] [Abstract][Full Text] [Related]
10. An electrochemical-sensor system for real-time flow measurements in porous materials. Bathany C; Han JR; Abi-Samra K; Takayama S; Cho YK Biosens Bioelectron; 2015 Aug; 70():115-21. PubMed ID: 25797850 [TBL] [Abstract][Full Text] [Related]
11. The effect of evaporation on the wicking of liquids into a metallic weave. Fries N; Odic K; Conrath M; Dreyer M J Colloid Interface Sci; 2008 May; 321(1):118-29. PubMed ID: 18272170 [TBL] [Abstract][Full Text] [Related]
12. Liquid Wicking in a Paper Strip: An Experimental and Numerical Study. Patari S; Mahapatra PS ACS Omega; 2020 Sep; 5(36):22931-22939. PubMed ID: 32954142 [TBL] [Abstract][Full Text] [Related]
14. Solventless fabrication of porous-on-porous materials. Kwong P; Seidel S; Gupta M ACS Appl Mater Interfaces; 2013 Oct; 5(19):9714-8. PubMed ID: 24073753 [TBL] [Abstract][Full Text] [Related]
15. Metering the capillary-driven flow of fluids in paper-based microfluidic devices. Noh H; Phillips ST Anal Chem; 2010 May; 82(10):4181-7. PubMed ID: 20411969 [TBL] [Abstract][Full Text] [Related]
16. Characterization of microchip electrophoresis devices fabricated by direct-printing process with colored toner. Gabriel EF; do Lago CL; Gobbi ÅL; Carrilho E; Coltro WK Electrophoresis; 2013 Aug; 34(15):2169-76. PubMed ID: 23712918 [TBL] [Abstract][Full Text] [Related]
17. Using Adhesive Patterning to Construct 3D Paper Microfluidic Devices. Kalish B; Tsutsui H J Vis Exp; 2016 Apr; (110):e53805. PubMed ID: 27077551 [TBL] [Abstract][Full Text] [Related]
18. Wax Spreading in Paper under Controlled Pressure and Temperature. Hong W; Zhou J; Kanungo M; Jia N; Dinsmore AD Langmuir; 2018 Jan; 34(1):432-441. PubMed ID: 29239620 [TBL] [Abstract][Full Text] [Related]
19. Patterning of superhydrophobic paper to control the mobility of micro-liter drops for two-dimensional lab-on-paper applications. Balu B; Berry AD; Hess DW; Breedveld V Lab Chip; 2009 Nov; 9(21):3066-75. PubMed ID: 19823721 [TBL] [Abstract][Full Text] [Related]