These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 26477676)

  • 21. Programmable diagnostic devices made from paper and tape.
    Martinez AW; Phillips ST; Nie Z; Cheng CM; Carrilho E; Wiley BJ; Whitesides GM
    Lab Chip; 2010 Oct; 10(19):2499-504. PubMed ID: 20672179
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Low-cost, high-throughput fabrication of cloth-based microfluidic devices using a photolithographical patterning technique.
    Wu P; Zhang C
    Lab Chip; 2015 Mar; 15(6):1598-608. PubMed ID: 25656508
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Toward instrument-free digital measurements: a three-dimensional microfluidic device fabricated in a single sheet of paper by double-sided printing and lamination.
    Jeong SG; Lee SH; Choi CH; Kim J; Lee CS
    Lab Chip; 2015 Feb; 15(4):1188-94. PubMed ID: 25571937
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Saturation Equation: An Analytical Expression for Partial Saturation during Wicking Flow in Paper Microfluidic Channels.
    Verma S; Toley BJ
    Langmuir; 2024 Jun; 40(22):11419-11427. PubMed ID: 38770942
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Capillary driven low-cost V-groove microfluidic device with high sample transport efficiency.
    Tian J; Kannangara D; Li X; Shen W
    Lab Chip; 2010 Sep; 10(17):2258-64. PubMed ID: 20589291
    [TBL] [Abstract][Full Text] [Related]  

  • 26. One-way wicking in open micro-channels controlled by channel topography.
    Feng J; Rothstein JP
    J Colloid Interface Sci; 2013 Aug; 404():169-78. PubMed ID: 23726385
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lab on a stick: multi-analyte cellular assays in a microfluidic dipstick.
    Reis NM; Pivetal J; Loo-Zazueta AL; Barros JM; Edwards AD
    Lab Chip; 2016 Aug; 16(15):2891-9. PubMed ID: 27374435
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microfluidic devices obtained by thermal toner transferring on glass substrate.
    do Lago CL; Neves CA; Pereira de Jesus D; da Silva HD; Brito-Neto JG; Fracassi da Silva JA
    Electrophoresis; 2004 Nov; 25(21-22):3825-31. PubMed ID: 15565679
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization.
    Wang J; He Y; Xia H; Niu LG; Zhang R; Chen QD; Zhang YL; Li YF; Zeng SJ; Qin JH; Lin BC; Sun HB
    Lab Chip; 2010 Aug; 10(15):1993-6. PubMed ID: 20508876
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An instrument-free, screen-printed paper microfluidic device that enables bio and chemical sensing.
    Mohammadi S; Maeki M; Mohamadi RM; Ishida A; Tani H; Tokeshi M
    Analyst; 2015 Oct; 140(19):6493-9. PubMed ID: 26207925
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A fluidic diode, valves, and a sequential-loading circuit fabricated on layered paper.
    Chen H; Cogswell J; Anagnostopoulos C; Faghri M
    Lab Chip; 2012 Aug; 12(16):2909-13. PubMed ID: 22699228
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of protein adsorption on the radial wicking of blood droplets in paper.
    Hertaeg MJ; Tabor RF; Garnier G
    J Colloid Interface Sci; 2018 Oct; 528():116-123. PubMed ID: 29843059
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hemp-Based Microfluidics.
    Temirel M; Dabbagh SR; Tasoglu S
    Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33673025
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Capillary Flow in Open Microgrooves: Bifurcations and Networks.
    Lee JJ; Berthier J; Theberge AB; Berthier E
    Langmuir; 2019 Aug; 35(32):10667-10675. PubMed ID: 31318573
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Understanding wax printing: a simple micropatterning process for paper-based microfluidics.
    Carrilho E; Martinez AW; Whitesides GM
    Anal Chem; 2009 Aug; 81(16):7091-5. PubMed ID: 20337388
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fluidic timers for time-dependent, point-of-care assays on paper.
    Noh H; Phillips ST
    Anal Chem; 2010 Oct; 82(19):8071-8. PubMed ID: 20809563
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An oxidized liquid metal-based microfluidic platform for tunable electronic device applications.
    Li G; Parmar M; Lee DW
    Lab Chip; 2015 Feb; 15(3):766-75. PubMed ID: 25431832
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Three-dimensional wax patterning of paper fluidic devices.
    Renault C; Koehne J; Ricco AJ; Crooks RM
    Langmuir; 2014 Jun; 30(23):7030-6. PubMed ID: 24896490
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamics of bacterial streamers induced clogging in microfluidic devices.
    Hassanpourfard M; Ghosh R; Thundat T; Kumar A
    Lab Chip; 2016 Oct; 16(21):4091-4096. PubMed ID: 27713995
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Paper-based microfluidic devices for analysis of clinically relevant analytes present in urine and saliva.
    Klasner SA; Price AK; Hoeman KW; Wilson RS; Bell KJ; Culbertson CT
    Anal Bioanal Chem; 2010 Jul; 397(5):1821-9. PubMed ID: 20425107
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.