BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 26477746)

  • 1. Remarkable enhancement in the Kapitza resistance and electron potential barrier of chemically modified In2O3(ZnO)9 natural superlattice interfaces.
    Liang X
    Phys Chem Chem Phys; 2015 Nov; 17(44):29655-60. PubMed ID: 26477746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing interfacial transport properties of InO
    Liang X; Shen L
    Nanoscale; 2018 Mar; 10(9):4500-4514. PubMed ID: 29459930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recasting the Callaway and von Baeyer thermal conductivity model on defective oxide materials: the ZnO-In2O3 system as an example.
    Liang X
    Phys Chem Chem Phys; 2015 Nov; 17(41):27889-93. PubMed ID: 26439937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reducing Kapitza resistance between graphene/water interface via interfacial superlattice structure.
    Peng X; Jiang P; Ouyang Y; Lu S; Ren W; Chen J
    Nanotechnology; 2021 Oct; 33(3):. PubMed ID: 34644695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct Probing of Cross-Plane Thermal Properties of Atomic Layer Deposition Al
    Park NW; Lee WY; Yoon YS; Ahn JY; Lee JH; Kim GS; Kim TG; Choi CJ; Park JS; Saitoh E; Lee SK
    ACS Appl Mater Interfaces; 2018 Dec; 10(51):44472-44482. PubMed ID: 30507128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermoelectric Transport Properties of Fe-Enriched ZnO with High-Temperature Nanostructure Refinement.
    Liang X
    ACS Appl Mater Interfaces; 2015 Apr; 7(15):7927-37. PubMed ID: 25839985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal conductance of hydrophilic and hydrophobic interfaces.
    Ge Z; Cahill DG; Braun PV
    Phys Rev Lett; 2006 May; 96(18):186101. PubMed ID: 16712374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nano-inclusions: a novel approach to tune the thermal conductivity of In2O3.
    Xu W; Liu Y; Chen B; Liu DB; Lin YH; Marcelli A
    Phys Chem Chem Phys; 2013 Oct; 15(40):17595-600. PubMed ID: 24037115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors.
    Kim W; Zide J; Gossard A; Klenov D; Stemmer S; Shakouri A; Majumdar A
    Phys Rev Lett; 2006 Feb; 96(4):045901. PubMed ID: 16486849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal properties of amorphous/crystalline silicon superlattices.
    France-Lanord A; Merabia S; Albaret T; Lacroix D; Termentzidis K
    J Phys Condens Matter; 2014 Sep; 26(35):355801. PubMed ID: 25105883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel nano-configuration for thermoelectrics: helicity induced thermal conductivity reduction in nanowires.
    Varshney V; Roy AK; Dudis DS; Lee J; Farmer BL
    Nanoscale; 2012 Aug; 4(16):5009-16. PubMed ID: 22767206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-step chemical synthesis of ZnO/graphene oxide molecular hybrids for high-temperature thermoelectric applications.
    Chen D; Zhao Y; Chen Y; Wang B; Chen H; Zhou J; Liang Z
    ACS Appl Mater Interfaces; 2015 Feb; 7(5):3224-30. PubMed ID: 25607423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Piezotronic Tuning of Potential Barriers in ZnO Bicrystals.
    Keil P; Trapp M; Novak N; Frömling T; Kleebe HJ; Rödel J
    Adv Mater; 2018 Mar; 30(10):. PubMed ID: 29349853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The thermoelectric power factor of a semiconductor superlattice with nanoparticle inclusions.
    Lung F; Marinescu DC
    J Phys Condens Matter; 2011 Sep; 23(36):365802. PubMed ID: 21857098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of direct electron-phonon coupling across metal-semiconductor interfaces in thermal transport via molecular dynamics.
    Lin KH; Strachan A
    J Chem Phys; 2015 Jul; 143(3):034703. PubMed ID: 26203038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning Coherent-Phonon Heat Transport in LaCoO
    Bugallo D; Langenberg E; Carbó-Argibay E; Varela Dominguez N; Fumega AO; Pardo V; Lucas I; Morellón L; Rivadulla F
    J Phys Chem Lett; 2021 Dec; 12(49):11878-11885. PubMed ID: 34875171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of Kapitza resistance at fluid-solid interfaces.
    Alosious S; Kannam SK; Sathian SP; Todd BD
    J Chem Phys; 2019 Nov; 151(19):194502. PubMed ID: 31757152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low thermal conductivity in a modular inorganic material with bonding anisotropy and mismatch.
    Gibson QD; Zhao T; Daniels LM; Walker HC; Daou R; Hébert S; Zanella M; Dyer MS; Claridge JB; Slater B; Gaultois MW; Corà F; Alaria J; Rosseinsky MJ
    Science; 2021 Aug; 373(6558):1017-1022. PubMed ID: 34446603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of thin film confined between two dissimilar solids on interfacial thermal resistance.
    Liang Z; Tsai HL
    J Phys Condens Matter; 2011 Dec; 23(49):495303. PubMed ID: 22109825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kapitza resistance in the lattice Boltzmann-Peierls-Callaway equation for multiphase phonon gases.
    Lee J; Roy AK; Farmer BL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056706. PubMed ID: 21728692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.