BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 26477748)

  • 1. Reproducible, stable and fast electrochemical activity from easy to make graphene on copper electrodes.
    Bosch-Navarro C; Laker ZP; Rourke JP; Wilson NR
    Phys Chem Chem Phys; 2015 Nov; 17(44):29628-36. PubMed ID: 26477748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical properties of CVD grown pristine graphene: monolayer- vs. quasi-graphene.
    Brownson DA; Varey SA; Hussain F; Haigh SJ; Banks CE
    Nanoscale; 2014; 6(3):1607-21. PubMed ID: 24337073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the electrochemical performance of graphite and graphene paste electrodes composed of varying lateral flake sizes.
    Slate AJ; Brownson DAC; Abo Dena AS; Smith GC; Whitehead KA; Banks CE
    Phys Chem Chem Phys; 2018 Aug; 20(30):20010-20022. PubMed ID: 30022207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laser-scribed graphene presents an opportunity to print a new generation of disposable electrochemical sensors.
    Griffiths K; Dale C; Hedley J; Kowal MD; Kaner RB; Keegan N
    Nanoscale; 2014 Nov; 6(22):13613-22. PubMed ID: 25274421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscale Electrochemistry of sp(2) Carbon Materials: From Graphite and Graphene to Carbon Nanotubes.
    Unwin PR; Güell AG; Zhang G
    Acc Chem Res; 2016 Sep; 49(9):2041-8. PubMed ID: 27501067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the electrochemical performance of graphitic paste electrodes: graphene vs. graphite.
    Figueiredo-Filho LC; Brownson DA; Gómez-Mingot M; Iniesta J; Fatibello-Filho O; Banks CE
    Analyst; 2013 Nov; 138(21):6354-64. PubMed ID: 24010127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemistry of Q-graphene.
    Randviir EP; Brownson DA; Gómez-Mingot M; Kampouris DK; Iniesta J; Banks CE
    Nanoscale; 2012 Oct; 4(20):6470-80. PubMed ID: 22961209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrafast Electron Transfer Kinetics of Graphene Grown by Chemical Vapor Deposition.
    Chen R; Nioradze N; Santhosh P; Li Z; Surwade SP; Shenoy GJ; Parobek DG; Kim MA; Liu H; Amemiya S
    Angew Chem Int Ed Engl; 2015 Dec; 54(50):15134-7. PubMed ID: 26563580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene oxide electrochemistry: the electrochemistry of graphene oxide modified electrodes reveals coverage dependent beneficial electrocatalysis.
    Brownson DAC; Smith GC; Banks CE
    R Soc Open Sci; 2017 Nov; 4(11):171128. PubMed ID: 29291099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The fabrication, characterisation and electrochemical investigation of screen-printed graphene electrodes.
    Randviir EP; Brownson DA; Metters JP; Kadara RO; Banks CE
    Phys Chem Chem Phys; 2014 Mar; 16(10):4598-611. PubMed ID: 24458292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical properties of vertically aligned graphenes: tailoring heterogeneous electron transfer through manipulation of the carbon microstructure.
    Brownson DAC; Garcia-Miranda Ferrari A; Ghosh S; Kamruddin M; Iniesta J; Banks CE
    Nanoscale Adv; 2020 Nov; 2(11):5319-5328. PubMed ID: 36132042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-layer graphene as a stable and transparent electrode for nonaqueous radical annihilation electrogenerated chemiluminescence.
    Cristarella TC; Chinderle AJ; Hui J; Rodríguez-López J
    Langmuir; 2015 Apr; 31(13):3999-4007. PubMed ID: 25780938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison and reappraisal of carbon electrodes for the voltammetric detection of dopamine.
    Patel AN; Tan SY; Miller TS; Macpherson JV; Unwin PR
    Anal Chem; 2013 Dec; 85(24):11755-64. PubMed ID: 24308368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CVD graphene electrochemistry: biologically relevant molecules.
    Brownson DA; Gómez-Mingot M; Banks CE
    Phys Chem Chem Phys; 2011 Dec; 13(45):20284-8. PubMed ID: 21989626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemistry at highly oriented pyrolytic graphite (HOPG): lower limit for the kinetics of outer-sphere redox processes and general implications for electron transfer models.
    Zhang G; Cuharuc AS; Güell AG; Unwin PR
    Phys Chem Chem Phys; 2015 May; 17(17):11827-38. PubMed ID: 25869656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The electrochemistry of CVD graphene: progress and prospects.
    Brownson DA; Banks CE
    Phys Chem Chem Phys; 2012 Jun; 14(23):8264-81. PubMed ID: 22585008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The electrochemical performance of graphene modified electrodes: an analytical perspective.
    Brownson DA; Foster CW; Banks CE
    Analyst; 2012 Apr; 137(8):1815-23. PubMed ID: 22403764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrogen-doped pyrolytic carbon films as highly electrochemically active electrodes.
    Nolan H; McEvoy N; Keeley GP; Callaghan SD; McGuinness C; Duesberg GS
    Phys Chem Chem Phys; 2013 Nov; 15(42):18688-93. PubMed ID: 24085267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bio-electrocatalysis of NADH and ethanol based on graphene sheets modified electrodes.
    Guo K; Qian K; Zhang S; Kong J; Yu C; Liu B
    Talanta; 2011 Aug; 85(2):1174-9. PubMed ID: 21726755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide.
    Zhou M; Zhai Y; Dong S
    Anal Chem; 2009 Jul; 81(14):5603-13. PubMed ID: 19522529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.