These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 26477856)

  • 1. Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination.
    Zhao Z; Luo Y; Zhang W; Wang C; Gao P; Wang Y; Pu M; Yao N; Zhao C; Luo X
    Sci Rep; 2015 Oct; 5():15320. PubMed ID: 26477856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic Structures, Materials and Lenses for Optical Lithography beyond the Diffraction Limit: A Review.
    Wang C; Zhang W; Zhao Z; Wang Y; Gao P; Luo Y; Luo X
    Micromachines (Basel); 2016 Jul; 7(7):. PubMed ID: 30404291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cascaded DBR plasmonic cavity lens for far-field subwavelength imaging at a visible wavelength.
    Li H; Fu L; Frenner K; Osten W
    Opt Express; 2018 Jul; 26(15):19574-19582. PubMed ID: 30114128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling and experimental study of plasmonic lens imaging with resolution enhanced methods.
    Zhao Z; Luo Y; Yao N; Zhang W; Wang C; Gao P; Zhao C; Pu M; Luo X
    Opt Express; 2016 Nov; 24(24):27115-27126. PubMed ID: 27906286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Doubling the spatial frequency with cavity resonance lithography.
    Lee H; Verma R
    Opt Express; 2011 Aug; 19(17):16518-25. PubMed ID: 21935016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical study of the plasmonic slab lens for improving direct-write nano lithography.
    Peng R; Lin J; Meng Y; Feng S; Lin T; Gao K; Gan Y; Zhao Q; Zhou M
    Opt Express; 2024 Jan; 32(3):4189-4200. PubMed ID: 38297625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cascaded plasmonic superlens for far-field imaging with magnification at visible wavelength.
    Li H; Fu L; Frenner K; Osten W
    Opt Express; 2018 Apr; 26(8):10888-10897. PubMed ID: 29716019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quasi-3D plasmonic coupling scheme for near-field optical lithography and imaging.
    Wang Y; Du Z; Park Y; Chen C; Zhang X; Pan L
    Opt Lett; 2015 Aug; 40(16):3918-21. PubMed ID: 26274694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Far-field optical superlens.
    Liu Z; Durant S; Lee H; Pikus Y; Fang N; Xiong Y; Sun C; Zhang X
    Nano Lett; 2007 Feb; 7(2):403-8. PubMed ID: 17298007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study on forbidden pitch in plasmonic lithography: taking 365 nm wavelength thin silver film-based superlens imaging lithography as an example.
    Ding H; Liu L; Dong L; Han D; Fan T; Zhang L; Wei Y
    Opt Express; 2022 Sep; 30(19):33869-33885. PubMed ID: 36242413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography.
    Luo J; Zeng B; Wang C; Gao P; Liu K; Pu M; Jin J; Zhao Z; Li X; Yu H; Luo X
    Nanoscale; 2015 Nov; 7(44):18805-12. PubMed ID: 26507847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High efficiency plasmonic probe design for parallel near-field optics applications.
    Rui G; Chen W; Zhan Q
    Opt Express; 2011 Mar; 19(6):5187-95. PubMed ID: 21445154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Super-resolution imaging via spatiotemporal frequency shifting and coherent detection.
    Alekseyev L; Narimanov E; Khurgin J
    Opt Express; 2011 Oct; 19(22):22350-7. PubMed ID: 22109076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Far-field control of focusing plasmonic waves through disordered nanoholes.
    Seo E; Ahn J; Choi W; Lee H; Jhon YM; Lee S; Choi W
    Opt Lett; 2014 Oct; 39(20):5838-41. PubMed ID: 25361098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-Area High Aspect Ratio Plasmonic Interference Lithography Utilizing a Single High-k Mode.
    Chen X; Yang F; Zhang C; Zhou J; Guo LJ
    ACS Nano; 2016 Apr; 10(4):4039-45. PubMed ID: 27075440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of pattern quality in maskless plasmonic lithography via spatial loss modulation.
    Han D; Deng S; Ye T; Wei Y
    Microsyst Nanoeng; 2023; 9():40. PubMed ID: 37007604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep sub-wavelength imaging lithography by a reflective plasmonic slab.
    Wang C; Gao P; Zhao Z; Yao N; Wang Y; Liu L; Liu K; Luo X
    Opt Express; 2013 Sep; 21(18):20683-91. PubMed ID: 24103941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational Nanopatterning in the Plasmonic Metamaterials for Diffraction Limit.
    Kim SK
    J Nanosci Nanotechnol; 2015 Feb; 15(2):1368-74. PubMed ID: 26353657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanofocusing beyond the near-field diffraction limit via plasmonic Fano resonance.
    Song M; Wang C; Zhao Z; Pu M; Liu L; Zhang W; Yu H; Luo X
    Nanoscale; 2016 Jan; 8(3):1635-41. PubMed ID: 26691553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A super-oscillatory lens optical microscope for subwavelength imaging.
    Rogers ET; Lindberg J; Roy T; Savo S; Chad JE; Dennis MR; Zheludev NI
    Nat Mater; 2012 Mar; 11(5):432-5. PubMed ID: 22447113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.